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Course Summary

Several recently developed shape representations go beyond conventional
surface and volume techniques and offer advantages for compression,
transmission, high resolution, editing, and rendering of complex shapes.

In this course, some of the world's leading computer graphics researchers and
practitioners summarize the state of the art in shape representations and
provide detailed information on how to implement the various methods. The
course includes a discussion of various applications, including sculpting and 3D
scanning of real-life objects.

Topics

Introduction and overview.
Displaced subdivision surfaces.
Normal meshes.
Point-based graphics and visualization.
Surface representations and signal processing.
Adaptively sampled distance fields.
Image-based representations.
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Displaced Subdivision Surfaces New Directions in Shape Representations
SIGGRAPH 2001

1

Displaced Subdivision Surfaces

Henry Moreton
NVIDIA Corporation

2

Our Approach

Control mesh Domain Surface Displaced 
Subdivision Surface

DSS = Smooth Surface ƒƒ Scalar Disp Field



Displaced Subdivision Surfaces New Directions in Shape Representations
SIGGRAPH 2001

3

Use a B&W Image to Define Height

4

Scaling Displacements

××-1
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5

Deforming the Domain Surface

6

Others
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Representation Overview

8

Displacement Maps Correspond 
to Subdivision Sampling

Maps are 2n+1 in size…

Triangular Subdivision Quad Subdivision
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Advantages of DSS

• Level of detail

• Animation

• Intrinsic parameterization

• Unified representation 

10

• Vary tessellation

• Bump map to preserve visual detail

• Z-texture to preserve depth (!z-fighting)

Level of Detail

2 8 32 128

512 2048 8192 32768 131072
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More Detail!

13107232768

81922048

12

Animation

Light-weight
• Manipulate a smooth base surface

• Animate a highly detailed mesh

Simple base surface
• Model so detail is scalar offset

• Model with sufficient animation control
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Intrinsic Parameterization

• Governed by a subdivision surface

• No storage necessary

• Capture details as scalar displacement

14

Unified Representation

• Same subdivision rule for geometry and 
displacement

• Well-defined magnification
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What is Different About DSS?
vs. displacement maps

• Forward mapping

• Magnification filter 

DSS are forward-mapped displacement mapped 
subdivision surfaces with a well-defined magnification 
filter.

16

Forward Mapping is Efficient

• Midpoint subdivision mesh refinement 

• Displacement sampling 
occurs in object-space

• Filtering is redundant frame-to-frame

• Also true for displacement mapped triangles …

• In Contrast:
texture sampling occurs in screen-space
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1D Magnification example…

Displacement

Curve and Offset

18

1D Cubic Filtering

DSS Curve
subdivision filter
≡ cubic B-spline

DSS Curve
linear filter
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2D Polynomial Filtering

• Well-defined magnification filter on an arbitrary mesh

•The surface is subdivided n times with map 2n+1
•Displacement is appended to x,y,z as w component

• A Loop subdivision surface is a generalized quartic 
triangular B-spline patch

• A Catmull-Clark subdivision surface is a generalized 
cubic B-spline patch

20
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Analytic Behavior

• C1 continuous everywhere except at extraordinary 
vertices
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Normal Evaluation

22

Normal Maps 

134,656 faces 8,416 faces 526 faces

• Can be used to calculate bump maps

• Relative to domain (base) surface
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Normal Map Calculation

$ $ $ $ $n t b n nbase base base map dsso t ⋅ =

$ $ $ $ $n n t b nmap base base base dss= ⋅
−o t 1

24

Bump, Stretch & Squeeze

Want a static bump map, but…
• Stretching should flatten bumps

• Squeezing increases normal variation
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Modified Tangent Frame

Use a non-orthonormal tangent frame

r
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r
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Improvements on Bump Mapping

Bump mapping simulates  lighting of a rough 
surface…
• It does nothing for occlusion…

•Silhouettes
– We can’t relocate pixels – adaptive tessellation

•Z-fighting
– We can adjust Z per pixel – Z texture
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Z- Textures
Billboards Normal 

map

Alpha 
mask Z-texture

28

Z-texture for Displacement 
Correction
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Z-texture Characteristics

• Addresses Z-fighting problems

• Incorrect occlusion

Interaction with shadow buffers…
• Identifier-based shadow buffers are incompatible 

with z-textures
•Depth-based shadow buffers exploit planar triangles

30

A Simple Z-texture Example

Bump mapped
& Z-textured Bump mapped
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Adaptive Tessellation

• Test edges

• Test interior

• Interpolate for
“Flat” vertices

• Draw degenerate triangles

Works for pixel lighting

? ?

?

?

?

32

Displaced Triangles 
Don’t Animate Well
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Variable k is Non-Trivial

Examples are uniform k

To guarantee
smoothness the
boundaries of finer
regions must be forced 
to match coarse sampling

34

DSS Construction

• Published work is top-down
fine�coarse

• Range-scan processing
better bottom-up.

• Modeling also bottom-up.
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ABSTRACT
In this paper we introduce a new surface representation, the
displaced subdivision surface. It represents a detailed surface
model as a scalar-valued displacement over a smooth domain
surface. Our representation defines both the domain surface and
the displacement function using a unified subdivision framework,
allowing for simple and efficient evaluation of analytic surface
properties. We present a simple, automatic scheme for converting
detailed geometric models into such a representation. The
challenge in this conversion process is to find a simple
subdivision surface that still faithfully expresses the detailed
model as its offset. We demonstrate that displaced subdivision
surfaces offer a number of benefits, including geometry
compression, editing, animation, scalability, and adaptive
rendering. In particular, the encoding of fine detail as a scalar
function makes the representation extremely compact.

Additional Keywords: geometry compression, multiresolution geometry,
displacement maps, bump maps, multiresolution editing, animation.

1. INTRODUCTION
Highly detailed surface models are becoming commonplace, in
part due to 3D scanning technologies. Typically these models are
represented as dense triangle meshes. However, the irregularity
and huge size of such meshes present challenges in manipulation,
animation, rendering, transmission, and storage. Meshes are an
expensive representation because they store:

(1) the irregular connectivity of faces,

(2) the (x,y,z) coordinates of the vertices,

(3) possibly several sets of texture parameterization (u,v)
coordinates at the vertices, and

(4) texture images referenced by these parameterizations, such as
color images and bump maps.

An alternative is to express the detailed surface as a displacement
from some simpler, smooth domain surface (see Figure 1).
Compared to the above, this offers a number of advantages:

(1) the patch structure of the domain surface is defined by a
control mesh whose connectivity is much simpler than that of
the original detailed mesh;

(2) fine detail in the displacement field can be captured as a
scalar-valued function which is more compact than traditional
vector-valued geometry;

(3) the parameterization of the displaced surface is inherited from
the smooth domain surface and therefore does not need to be
stored explicitly;

(4) the displacement field may be used to easily generate bump
maps, obviating their storage.

(a) control mesh (b) smooth
domain surface

(c) displaced
subdivision surface

Figure 1: Example of a displaced subdivision surface.

A simple example of a displaced surface is terrain data expressed
as a height field over a plane. The case of functions over the
sphere has been considered by Schröder and Sweldens [33].
Another example is the 3D scan of a human head expressed as a
radial function over a cylinder. However, even for this simple
case of a head, artifacts are usually detectable at the ear lobes,
where the surface is not a single-valued function over the
cylindrical domain.

The challenge in generalizing this concept to arbitrary surfaces is
that of finding a smooth underlying domain surface that can
express the original surface as a scalar-valued offset function.

Krishnamurthy and Levoy [25] show that a detailed model can be
represented as a displacement map over a network of B-spline
patches. However, they resort to a vector-valued displacement
map because the detailed model is not always an offset of their B-
spline surface. Also, avoiding surface artifacts during animation
requires that the domain surface be tangent-plane (C1) continuous,
which involves constraints on the B-spline control points.

We instead define the domain surface using subdivision surfaces,
since these can represent smooth surfaces of arbitrary topological
type without requiring control point constraints. Our
representation, the displaced subdivision surface, consists of a
control mesh and a scalar field that displaces the associated
subdivision surface locally along its normal (see Figure 1). In this
paper we use the Loop [27] subdivision surface scheme, although
the representation is equally well defined using other schemes
such as Catmull-Clark [5].

Both subdivision surfaces and displacement maps have been in
use for about 20 years. One of our contributions is to unify these
two ideas by defining the displacement function using the same
subdivision machinery as the surface. The scalar displacements
are stored on a piecewise regular mesh. We show that simple
subdivision masks can then be used to compute analytic properties
on the resulting displaced surface. Also, we make displaced
subdivision surface practical by introducing a scheme for
constructing them from arbitrary meshes.

ACM Copyright Notice
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We demonstrate several benefits of expressing a model as a
displaced subdivision surface:

Compression: both the surface topology and parameterization are
defined by the coarse control mesh, and fine geometric detail
is captured using a scalar-valued function (Section 5.1).

Editing: the fine detail can be easily modified since it is a scalar
field (Section 5.2).

Animation: the control mesh makes a convenient armature for
animating the displaced subdivision surface, since geometric
detail is carried along with the deformed smooth domain
surface (Section 5.3).

Scalability: the scalar displacement function may be converted
into geometry or a bump map. With proper multiresolution
filtering (Section 5.4), we can also perform magnification and
minification easily.

Rendering: the representation facilitates adaptive tessellation and
hierarchical backface culling (Section 5.5).

2. PREVIOUS WORK
Subdivision surfaces: Subdivision schemes defining
smooth surfaces have been introduced by Catmull and Clark [5],
Doo and Sabin [13], and Loop [27]. More recently, these schemes
have been extended to allow surfaces with sharp features [21] and
fractionally sharp features [11]. In this paper we use the Loop
subdivision scheme because it is designed for triangle meshes.

DeRose et al. [11] define scalar fields over subdivision surfaces
using subdivision masks. Our scalar displacement field is defined
similarly, but from a denser set of coefficients on a piecewise
regular mesh (Figure 2).

Hoppe et al. [21] describe a method for approximating an original
mesh with a much simpler subdivision surface. Unlike our
conversion scheme of Section 4, their method does not consider
whether the approximation residual is expressible as a scalar
displacement map.

Displacement maps: The idea of displacing a surface by a
function was introduced by Cook [9]. Displacement maps have
become popular commercially as procedural displacement shaders
in RenderMan [1]. The simplest displacement shaders interpolate
values within an image, perhaps using standard bicubic filters.
Though displacements may be in an arbitrary direction, they are
almost always along the surface normal [1].

Typically, normals on the displaced surface are computed
numerically using a dense tessellation. While simple, this
approach requires adjacency information that may be unavailable
or impractical with low-level APIs and in memory-constrained
environments (e.g. game consoles). Strictly local evaluation
requires that normals be computed from a continuous analytic
surface representation. However, it is difficult to piece together
multiple displacement maps while maintaining smoothness. One
encounters the same vertex enclosure problem [32] as in the
stitching of B-spline surfaces. While there are well-documented
solutions to this problem, they require constructions with many
more coefficients (9× in the best case), and may involve solving a
global system of equations.

In contrast, our subdivision-based displacements are inherently
smooth and have only quartic total degree (fewer DOF than
bicubic). Since the displacement map uses the same
parameterization as the domain surface, the surface representation
is more compact and displaced surface normals may be computed

more efficiently. Finally, unifying the representation around
subdivision simplifies implementation and makes operations such
as magnification more natural.

Krishnamurthy and Levoy [25] describe a scheme for
approximating an arbitrary mesh using a B-spline patch network
together with a vector-valued displacement map. In their scheme,
the patch network is constructed manually by drawing patch
boundaries on the mesh. The recent work on surface pasting by
Chan et al. [7] and Mann and Yeung [29] uses the similar idea of
adding a vector-valued displacement map to a spline surface.

Gumhold and Hüttner [19] describe a hardware architecture for
rendering scalar-valued displacement maps over planar triangles.
To avoid cracks between adjacent triangles of a mesh, they
interpolate the vertex normals across the triangle face, and use this
interpolated normal to displace the surface. Their scheme permits
adaptive tessellation in screen space. They discuss the importance
of proper filtering when constructing mipmap levels in a
displacement map. Unlike our representation, their domain
surface is not smooth since it is a polyhedron. As shown in
Section 5.3, animating a displaced surface using a polyhedral
domain surface results in many surface artifacts.

Kobbelt et al. [23] use a similar framework to express the
geometry of one mesh as a displacement from another mesh, for
the purpose of multiresolution shape deformation.

Bump maps: Blinn [3] introduces the idea of perturbing the
surface normal using a bump map. Peercy et al. [31] present
recent work on efficient hardware implementation of bump maps.
Cohen et al. [8] drastically simplify meshes by capturing detail in
the related normal maps. Both Cabral et al. [4] and Apodaca and
Gritz [1] discuss the close relationship of bump mapping and
displacement mapping. They advocate combining them into a
unified representation and resorting to true displacement mapping
only when necessary.

Multiresolution subdivision: Lounsbery et al. [28] apply
multiresolution analysis to arbitrary surfaces. Given a
parameterization of the surface over a triangular domain, they
compress this (vector-valued) parameterization using a wavelet
basis, where the basis functions are defined using subdivision of
the triangular domain. Zorin et al. [39] use a similar subdivision
framework for multiresolution mesh editing. To make this
multiresolution framework practical, several techniques have been
developed for constructing a parameterization of an arbitrary
surface over a triangular base domain. Eck et al. [14] use
Voronoi/Delaunay diagrams and harmonic maps, while Lee et al.
[26] track successive mappings during mesh simplification.

In contrast, displaced subdivision surfaces do not support an
arbitrary parameterization of the surface, since the
parameterization is given by that of a subdivision surface. The
benefit is that we need only compress a scalar-valued function
instead of vector-valued parameterization. In other words, we
store only geometric detail, not a parameterization. The drawback
is that the original surface must be expressible as an offset of a
smooth domain surface. An extremely bad case would be a fractal
“snowflake” surface, where the domain surface cannot be made
much simpler than the original surface. Fortunately, fine detail in
most practical surfaces is expressible as an offset surface.

Guskov et al. [20] represent a surface by successively applying a
hierarchy of displacements to a mesh as it is subdivided. Their
construction allows most of the vertices to be encoded using
scalar displacements, but a small fraction of the vertices require
vector displacements to prevent surface folding.



3. REPRESENTATION OVERVIEW
A displaced subdivision surface consists of a triangle control
mesh and a piecewise regular mesh of scalar displacement
coefficients (see Figure 2). The domain surface is generated from
the control mesh using Loop subdivision. Likewise, the
displacements applied to the domain surface are generated from
the scalar displacement mesh using Loop subdivision.

Figure 2: Control mesh (left) with its piecewise regular mesh of
scalar displacement coefficients ( k = 3 ).

Displacement map: The scalar displacement mesh is stored
for each control mesh triangle as one half of the sample grid

)12()12( +×+ kk , where k depends on the sampling density
required to achieve a desired level of accuracy or compression.

To define a continuous displacement function, these stored values
are taken to be subdivision coefficients for the same (Loop)
subdivision scheme that defines the domain surface. Thus, as the
surface is magnified (i.e. subdivided beyond level k), both the
domain surface geometry and the displacement field are
subdivided using the same machinery. As a consequence, the
displacement field is C1 even at extraordinary vertices, and the
displaced subdivision surface is C1 everywhere except at
extraordinary vertices. The handling of extraordinary vertices is
discussed below.

For surface minification, we first compute the limit displacements
for the subdivision coefficients at level k, and we then construct a
mipmap pyramid with levels 0 1, ,� k −l q by successive filtering

of these limit values. We cover filtering possibilities in Section
4.5. As with ordinary texture maps, the content author may
sometimes want more precise control of the filtered levels, so it
may be useful to store the entire pyramid. (For our compression
analysis in Section 5.1, we assume that the pyramid is built
automatically.)

For many input meshes, it is inefficient to use the same value of k
for all control mesh faces. For a given face, the choice of k may
be guided by the number of original triangles associated it, which
is easily estimated using MAPS [26]. Those regions with lower
values of k are further subdivided logically to produce a mesh
with uniform k.

Normal Calculation: We now derive the surface normal for

a point
�

S on the displaced subdivision surface. Let
�

S be the

displacement of the limit point
�

P on the domain surface:
� �
S P Dn= + � ,

where D is the limit displacement and � /n n n= � �
is the unit

normal on the domain surface. The normal
�

n is obtained as
� � �
n P Pu v= × where the tangent vectors

�
Pu and

�

Pv are computed

using the first derivative masks in Figure 3.

The displaced subdivision surface normal at S is defined as
�

� �

n S Ss u v= × where each tangent vector has the form
� �
S P D n Dnu u u u= + +� � .

If the displacements are relatively small, it is common to ignore
the third term, which contains second-order derivatives [3].

However, if the surface is used as a modeling primitive, then the
displacements may be quite large and the full expression must be
evaluated. The difficult term uuu nnn

��

/ˆ = may be derived using

the Weingarten equations [12]. Equivalently, it may be expressed
as:

n

nnnn
n uu

u �

��

)ˆ(ˆ
ˆ ⋅−

= where uvuvuuu PPPPn
����

� ×+×= .

At a regular (valence 6) vertex, the necessary partial derivatives
are given by a simple set of masks (see Figure 3). At
extraordinary vertices, the curvature of the domain surface
vanishes and we omit the second-order term. In this case, the
standard Loop tangent masks may be used to compute the first
partial derivatives. Since there are few extraordinary vertices, this
simplified normal calculation has not proven to be a problem.
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Figure 3: Loop masks for limit position P and first and second
derivatives at a regular control vertex.

Bump map: The displacement map may also be used to
generate a bump map during the rendering of coarser tessellations
(see Figure 13). This improves rendering performance on
graphics systems where geometry processing is a bottleneck. The
construction of this bump map is presented in Section 5.4.

Other textures: The domain surface parameterization is used
for storing the displacement map (which also serves to define a
bump map). It is natural to re-use this same inherent
parameterization to store additional appearance attributes for the
surface, such as color. Section 4.4 describes how such attributes
are re-sampled from the original surface.

Alternatively, one could define more traditional surface
parameterizations by explicitly specifying (u,v) texture
coordinates at the vertices of the control mesh, as in [11].
However, since the domain of a (u,v) parameterization is a planar
region, this generally requires segmenting the surface into a set of
charts.



4. CONVERSION PROCESS
To convert an arbitrary triangle mesh (Figure 5a) into a displaced
subdivision surface (Figure 5b), our process performs the
following steps:

• Obtain an initial control mesh (Figure 5c) by simplifying the
original mesh. Simplification is done using a traditional
sequence of edge collapse transformations, but with added
heuristics to attempt to preserve a scalar offset function.

• Globally optimize the control mesh vertices (Figure 5d) such
that the domain surface (Figure 5e) more accurately fits the
original mesh.

• Sample the displacement map by shooting rays along the
domain surface normals until they intersect the original mesh.
At the ray intersection points, compute the signed displacement,
and optionally sample other appearance attributes like surface
color. (The black line segments visible in Figure 5f correspond
to rays with positive displacements.)

4.1 Simplification to control mesh
We simplify the original mesh using a sequence of edge collapse
transformations [22] prioritized according to the quadric error
metric of Garland and Heckbert [16]. In order to produce a good
domain surface, we restrict some of the candidate edge collapses.

The main objective is that the resulting domain surface should be
able to express the original mesh using a scalar displacement map.
Our approach is to ensure that the space of normals on the domain
surface remains locally similar to the corresponding space of
normals on the original mesh.

To maintain an efficient correspondence between the original
mesh and the simplified mesh, we use the MAPS scheme [26] to
track parameterizations of all original vertices on the mesh
simplified so far. (When an edge is collapsed, the
parametrizations of points in the neighborhood are updated using
a local 1-to-1 map onto the resulting neighborhood.)

For each candidate edge collapse transformation, we examine the
mesh neighborhood that would result. In Figure 4, the thickened
1-ring is the neighborhood of the unified vertex. For vertices on
this ring, we compute the subdivision surface normals (using
tangent masks that involve vertices in the 2-ring of the unified
vertex). The highlighted points within the faces in the 1-ring
represent original mesh vertices that are currently parameterized
on the neighborhood using MAPS.

allowable normals
on Gauss sphere

Figure 4: Neighborhood after candidate edge collapse and, for
one face, the spherical triangle about its domain surface normals.

(a) original mesh (b) displaced subdivision surface

(c) initial control mesh (d) optimized control mesh

(e) smooth domain surface (f) displacement field

Figure 5: Steps in the conversion process.

For each face in the 1-ring neighborhood, we gather the 3
subdivision surface normals at the vertices and form their
spherical triangle on the Gauss sphere. Then, we test whether this
spherical triangle encloses the normals of the original mesh
vertices parameterized using MAPS. If this test fails on any face
in the 1-ring, the edge collapse transformation is disallowed. To
allow simplification to proceed further, we have found it useful to



broaden each spherical triangle by pushing its three vertices an
additional 45 degrees away from its inscribed center, as illustrated
in Figure 4.

We observe that the domain surface sometimes has undesirable
undulations when the control mesh has vertices of high valence.
Therefore, during simplification we also disallow an edge collapse
if the resulting unified vertex would have valence greater than 8.

4.2 Optimization of domain surface
Having formed the initial control mesh, we optimize the locations
of its vertices such that the associated subdivision surface more
accurately fits the original mesh. This step is performed using the
method of Hoppe et al. [21]. We sample a dense set of points
from the original mesh and minimize their squared distances to
the subdivision surface. This nonlinear optimization problem is
approximated by iteratively projecting the points onto the surface
and solving for the most accurate surface while fixing those
parameterizations. The result of this step is shown in Figure 5d-e.

Note that this geometric optimization modifies the control mesh
and thus affects the space of normals over the domain surface.
Although this invalidates the heuristic used to guide the
simplification process, this has not been a problem in our
experiments. A more robust solution would be to optimize the
subdivision surface for each candidate edge collapse (as in [21])
prior to testing the neighborhood normals, but this would be much
more costly.

4.3 Sampling of scalar displacement map
We apply k steps of Loop subdivision to the control mesh. At
each of these subdivided vertices, we compute the limit position
and normal of the domain surface. We seek to compute the
signed distance from the limit point to the original surface along
the normal (Figure 5f).

The directed line formed by the point and normal is intersected
with the original surface, using a spatial hierarchy [17] for
efficiency. We disregard any intersection point if the intersected
surface is oriented in the wrong direction with respect to the
directed line. If multiple intersection points remain, we pick the
one closest to the domain surface. Figure 6 illustrates a possible
failure case if the domain surface is too far from the original.

domain surface

original mesh

Figure 6: The displacement sampling may “fold over itself” if
the domain surface is too distant from the original mesh.

Near surface boundaries, there is the problem that the domain
surface may extend beyond the boundary of the original surface,
in which case the ray does not intersect any useful part of the
original surface. (We detect this using a maximum distance
threshold based on the mesh size.) In this case, the surface should
really be left undefined, i.e. trimmed to the detailed boundary of
the original mesh. One approach would be to store a special
illegal value into the displacement map. Instead, we find the
closest original triangle to the subdivided vertex, and intersect the
ray with the plane containing that triangle. Precise surface
trimming can be achieved using an alpha mask in the surface
color image, but we have not yet implemented this.

4.4 Resampling of appearance attributes
Besides sampling the scalar displacement function, we also
sample other appearance attributes such as diffuse color. These
attributes are stored, filtered, and compressed just like the scalar
displacements. An example is shown in Figure 11.

4.5 Filtering of displacement map
Since our displacement field has the same structure as the domain
surface, we can apply the same subdivision mask for
magnification. This is particular useful when we try to zoom in a
tiny region on our displaced subdivision surface. For sampling
the displacements at minified levels of the displacement pyramid,
we compute the samples at any level l<k by filtering the limit
displacements of level l+1. We considered several filtering
operations and opted for the non-shrinking filter of Taubin [35].

Because the displacement magnitudes are kept small, their
filtering is not extremely sensitive. In many rendering situations
much of the visual detail is provided by bump mapping. As has
been discussed elsewhere [2], careful filtering of bump maps is
both important and difficult.

4.6 Conversion results
The following table shows execution times for the various steps of
the conversion process. These times are obtained on a Pentium III
550 MHz PC.

Model armadillo venus bunny dinosaur

Conversion Statistics
Original mesh #F 210,944 100,000 69,451 342,138

Control mesh #F 1,306 748 526 1,564

Maximum level k 4 4 4 4

Execution Times (minutes)

Simplification 61 28 19 115

Domain surface optimiz. 25 11 11 43

Displacement sampling 2 2 1 5

Total 88 41 31 163

5. BENEFITS

5.1 Compression
Mesh compression has recently been an active area of research.
Several clever schemes have been developed to concisely encode
the combinatorial structure of the mesh connectivity, in as few as
1-2 bits per face (e.g. [18] [35]). As a result, the major portion of
a compressed mesh goes to storing the mesh geometry. Vertex
positions are typically compressed using quantization, local
prediction, and variable-length delta encoding. Geometry can also
be compressed within a multiresolution subdivision framework as
a set of wavelet coefficients [28]. To our knowledge, all previous
compression schemes for arbitrary surfaces treat geometry as a
vector-valued function.

In contrast, displaced subdivision surfaces allow fine geometric
detail to be compressed as a scalar-valued function. Moreover,
the domain surface is constructed to be close to the original
surface, so the magnitude of the displacements tends to be small.

To exploit spatial coherence in the scalar displacement map, we
use linear prediction at each level of the displacement pyramid,
and encode the difference between the predicted and actual
values. For each level, we treat the difference coefficients over all



faces as a subband. For each subband, we use the embedded
quantizer and embedded entropy coder described in Taubman and
Zakhor [37]. The subbands are merged using the bit allocation
algorithm described by Shoham and Gersho [34], which is based
on integer programming.

An alternative would be to use the compression scheme of
Kolarov and Lynch [24], which is a generalization of the wavelet
compression method in [33].

Figure 10 and Table 1 show results of our compression
experiments. We compare storage costs for simplified triangle
meshes and displaced subdivision surfaces, such that both
compressed representations have the same approximation
accuracy with respect to the original reference model. This
accuracy is measured as L2 geometric distance between the
surfaces, computed using dense point sampling [16]. The
simplified meshes are obtained using the scheme of Garland and
Heckbert [16]. For mesh compression, we use the VRML
compressed binary format inspired by the work of Taubin and
Rossignac [36]. We vary the quantization level for the vertex
coordinates to obtain different compressed meshes, and then
adjust our displacement map compression parameters to obtain a
displaced surface with matching L2 geometric error.

For simplicity, we always compress the control meshes losslessly
in the experiments (i.e. with 23-bits/coordinate quantization). Our
compression results would likely be improved further by adapting
the quantization of the control mesh as well. However, this would
modify the domain surface geometry, and would therefore require
re-computing the displacement field. Also, severe quantization of
the control mesh would result in larger displacement magnitudes.

Table 1 shows that displaced subdivision surfaces consistently
achieve better compression rates than mesh compression, even
when the mesh is carefully simplified from detailed geometry.

5.2 Editing
The fine detail in the scalar displacement mesh can be edited
conveniently, as shown in the example of Figure 7.

Figure 7: In this simple editing example, the embossing effect is
produced by enhancing the scalar displacements according to a
texture image of the character ‘B’ projected onto the displaced
surface.

5.3 Animation
Displaced subdivision surfaces are a convenient representation for
animation. Kinematic and dynamics computation are vastly more
efficient when operating on the control mesh rather than the huge
detailed mesh.

Because the domain surface is smooth, the surface detail deforms
naturally without artifacts. Figure 8 shows that in contrast, the
use of a polyhedron as a domain surface results in creases and
folds even with a small deformation of a simple surface.

Subdivision control mesh Polyhedral control mesh

Domain surfaces

Displaced surfaces

Figure 8: Comparison showing the importance of using a smooth
domain surface when deforming the control mesh. The domain
surface is a subdivision surface on the left, and a polyhedron on
the right.

Figure 12 shows two frames from the animation of a more
complicated surface. For that example, we used 3D Studio MAX
to construct a skeleton of bones inside the control mesh, and
manipulated the skeleton to deform this mesh. (The complete
animation is on the accompanying video.)

Another application of our representation is the fitting of 3D head
scans [30]. For this application, it is desirable to re-use a common
control mesh structure so that deformations can be conveniently
transferred from one face model to another.

5.4 Scalability
Depending on the level-of-detail requirements and hardware
capabilities, the scalar displacement function can either be:

• rendered as explicit geometry: Since it is a continuous
representation, the tessellation is not limited to the resolution of
the displacement mesh. A scheme for adaptive tessellation is
presented in Section 5.5.

• converted to a bump map: This improves rendering
performance on graphics systems where geometry processing is
a bottleneck. As described in [31], the calculation necessary for
tangent-space bump mapping involves computing the displaced
subdivision surface normal relative to a coordinate frame on the
domain surface. A convenient coordinate frame is formed by the

domain surface unit normal �n and a tangent vector such as
�

Pu .

Given these vectors, the coordinate frame is:



�, �, �
� /
� � �

b t n
t P P

b n t

u u{ } where
=

� �

= ×
.

Finally, the normal �ns to the displaced subdivision surface

relative to this tangent space is computed using the transform:

� �, �, � �n b t n nstangent space

T
= ⋅{ } .

The computations of n̂ , uP
�

, and sn̂ are described in Section 3.

Note that we use the precise analytic normal in the bump map
calculation. As an example, Figure 13 shows renderings of the
same model with different boundaries between explicit geometry
and bump mapping. In the leftmost image, the displacements are
all converted into geometry, and bump-mapping is turned off. In
the rightmost image, the domain surface is sampled only at the
control mesh vertices, but the entire displacement pyramid is
converted into a bump map.

5.5 Rendering
Adaptive tessellation: In order to perform adaptive
tessellation, we need to compute the approximation error of any
intermediate tessellation level from the finely subdivided surface.
This approximation error is obtained by computing the maximum
distance between the dyadic points on the planar intermediate
level and their corresponding surface points at the finest level (see
Figure 9). Note that this error measurement corresponds to
parametric error and is stricter than geometric error. Bounding
parametric error is useful for preventing appearance fields (e.g.
bump map, color map) from sliding over the rendered surface [8].
These precomputed error measurements are stored in a quadtree
data structure. At runtime, adaptive tessellation prunes off the
entire subtree beneath a node if its error measurement satisfies
given level-of-detail parameters. By default, the displacements
applied to the vertices of a face are taken from the corresponding
level of the displacement pyramid.

Note that the pruning will make adjacent subtrees meet at
different levels. To avoid cracks, if a vertex is shared among
different levels, we choose the finest one from the pyramid. Also,
we perform a retriangulation of the coarser face so that it
conforms to the vertices along the common edges. Figure 14
shows some examples of adaptive tessellation.

one face in the
coarse tessellation

finely subdivided
surface

Figure 9: Error computation for adaptive tessellation.

Backface patch culling: To improve rendering
performance, we avoid rendering regions of the displaced
subdivision surface that are entirely facing away from the
viewpoint. We achieve this using the normal masks technique of
Zhang and Hoff [38].

On the finely subdivided version of the domain surface, we
compute the vertex normals of the displaced surface as described
in Section 3. We convert these into a normal mask for each
subdivided face. During a bottom-up traversal of the subdivision
hierarchy, we propagate these masks to the parents using the
logical or operation.

Given the view parameters, we then construct a viewing mask as
in [38], and take its logical and with the stored masks in the
hierarchy. Generally, we cull away 1/3 to 1/4 of the total number
of triangles, thereby speeding up rendering time by 20% to 30%.

6. DISCUSSION
Remeshing creases: As in other remeshing methods [14]
[26], the presence of creases in the original surface presents
challenges to our conversion process. Lee et al. [26] demonstrate
that the key is to associate such creases with edges in the control
mesh. Our simplification process also achieves this since mesh
simplification naturally preserves sharp features.

However, displaced subdivision surfaces have the further
constraint that the displacements are strictly scalar. Therefore, the
edges of the control mesh, when subdivided and displaced, do not
generally follow original surface creases exactly. (A similar
problem also arises at surface boundaries.) This problem can be
resolved if displacements were instead vector-based, but then the
representation would lose its simplicity and many of its benefits
(compactness, ease of scalability, etc.).

Scaling of displacements: Currently, scalar displacements
are simply multiplied by unit normals on the domain surface.
With a “rubbery” surface, the displaced subdivision surface
behaves as one would expect, since detail tends to smooth as the
surface stretches. However, greater control over the magnitude of
displacement is desirable in many situations. A simple extension
of the current representation is to provide scale and bias factors
( , )s b at control mesh vertices. These added controls enhance the

basic displacement formula:
� �
S P sD b n= + +( ) �

Exploring such scaling controls is an interesting area of future
work.

7. SUMMARY AND FUTURE WORK
Nearly all geometric representations capture geometric detail as a
vector-valued function. We have shown that an arbitrary surface
can be approximated by a displaced subdivision surface, in which
geometric detail is encoded as a scalar-valued function over a
domain surface. Our representation defines both the domain
surface and the displacement function using a unified subdivision
framework. This synergy allows simple and efficient evaluation
of analytic surface properties.

We demonstrated that the representation offers significant savings
in storage compared to traditional mesh compression schemes. It
is also convenient for animation, editing, and runtime level-of-
detail control.

Areas for future work include: a more rigorous scheme for
constructing the domain surface, improved filtering of bump
maps, hardware rendering, error measures for view-dependent
adaptive tessellation, and use of detail textures for displacements.
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Original mesh
342,138 faces; 1011 KB

Simplified mesh
50,000 faces; 169 KB

Compressed simplified mesh
(12-bits/coord.); 68 KB

Displaced subdivision surface
1564 control mesh faces; 18 KB

Original mesh
100,000 faces; 346 KB

Simplified mesh
20,000 faces; 75 KB

Compressed simplified mesh
(12-bits/coord.); 33 KB

Displaced subdivision surface
748 control mesh faces; 16 KB

Figure 10: Compression results. Each example shows the approximation of a dense original mesh using a simplified mesh and a displaced
subdivision surface, such that both have comparable L2 approximation error (expressed as a percentage of object bounding box).

Original mesh
Compressed

simplified mesh
Displaced subdivision

surface (k=4)
Dinosaur

#V=171,074
#F=342,138

#V=25,005
#F=50,000

#V0=787
#F0=1564 ≡ 6.5KB

Quantization
(bits/coord.)

L2

error
Size
(KB)

L2 error
Size
(KB)

L2 error
Size
(KB)

Size
ratio

23 0.002% 1011 0.024% 169 0.025% 22 7.7

12 0.014% 322 0.028% 68 0.028% 18 3.8

10 0.053% 217 0.059% 50 0.058% 10 5.0

8 0.197% 169 0.21% 35 0.153% 7 5.0

Original mesh
Compressed

simplified mesh
Displaced subdivision

surface (k=4)
Venus

#V=50,002
#F=100,000

#V=10,002
#F=20,000

#V0=376
#F0=748 ≡ 3.4KB

Quantization
(bits/coord.)

L2

error
Size
(KB)

L2 error
Size
(KB)

L2 error
Size
(KB)

Size
ratio

23 0.001% 346 0.027% 75 0.027% 17 4.4

12 0.014% 140 0.030% 33 0.031% 16 2.0

10 0.054% 102 0.059% 26 0.053% 8 3.2

8 0.207% 69 0.210% 18 0.149% 4 4.5

Table 1: Quantitative compression results for the two examples in Figure 10. Numbers in red refer to figures above.



Original colored mesh Displaced subdivision surface Domain surface Displacement samples (k=4)
Figure 11: Example of a displaced subdivision surface with resampled color.

Original mesh Control mesh Displaced subdiv. surface Modified control mesh Resulting deformed surface
Figure 12: The control mesh makes a convenient armature for animating the displaced subdivision surface.

Level 4 (134,656 faces) Level 3 (33,664 faces) Level 2 (8,416 faces) Level 1 (2,104 faces) Level 0 (526 faces)
Figure 13: Replacement of scalar displacements by bump-mapping at different levels.

Threshold = 1.87% diameter
12,950 triangles; L2 error = 0.104%

Threshold = 0.76% diameter
88,352 triangles; L2 error = 0.035%

Threshold = 0.39% diameter
258,720 triangles; L2 error = 0.016%

Figure 14: Example of adaptive tessellation, using the view-independent criterion of comparing residual error with a global threshold.
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Figure 1: Left: original mesh (3 floats/vertex). Middle: two stages of our algorithm. Right: normal mesh (1 float/vertex). (Skull dataset
courtesy Headus, Inc.)

Abstract

Normal meshes are new fundamental surface descriptions inspired
by differential geometry. A normal mesh is a multiresolution mesh
where each level can be written as a normal offset from a coarser
version. Hence the mesh can be stored with a single float per ver-
tex. We present an algorithm to approximate any surface arbitrarily
closely with a normal semi-regular mesh. Normal meshes can be
useful in numerous applications such as compression, filtering, ren-
dering, texturing, and modeling.

CR Categories and Subject Descriptors:I.3.5 [Computer Graphics]: Computa-

tional Geometry and Object Modeling -curve, surface, solid, and object representa-

tions; hierarchy and geometric transformations; G.1.2 [Numerical Analysis]: Ap-

proximation -approximation of surfaces and contours, wavelets and fractals

Additional Keywords: Meshes, subdivision, irregular connectivity, surface parame-

terization, multiresolution, wavelets.

1 Introduction

The standard way to parameterize a surface involvesthree scalar
functions x(u, v), y(u, v), z(u, v). Yet differential geometry
teaches us that smooth surfaces locally can be described by asingle
scalar height function over the tangent plane. Loosely speaking one
can say that the geometric information of a surface can be contained

in only a single dimension, the height over this plane. This obser-
vation holds infinitesimally; only special cases such as terrains and
star-shaped surfaces can globally be described with a single func-
tion.

In practice we often approximate surfaces using a triangle mesh.
While describing meshes is relatively easy, they have lost much
of the structure inherent in the original surface. For example, the
above observation that locally a surface can be characterized by a
scalar function is not reflected in the fact that we store 3 floats per
vertex. In other words, the correlation between neighboring sample
locations implied by the smoothness assumption is not reflected,
leading to an inherently redundant representation.

While vertex locations come as 3-dimensional quantities, the
above considerations tell us that locally two of those dimensions
represent parametric information and only the third captures geo-
metric, or shape, information. For a given smooth shape one may
choose different parameterizations, yet the geometry remains the
same. In the case of a mesh we can observe this by noticing that
infinitesimal tangential motion of a vertex does not change the ge-
ometry, only the sampling pattern, or parameterization. Moving in
the normal direction on the other hand changes the geometry and
leaves parameter information undisturbed.

1.1 Goals and Contributions
Based on the above observations, the aim of the present paper is to
compute mesh representations that only require a single scalar per
vertex. We call such representationsnormal meshes. The main in-
sight is that this can be done using multiresolution and local frames.
A normal mesh has a hierarchical representation so that all detail
coefficients when expressed in local frames are scalar, i.e., they only
have a normal component. In the context of compression, for ex-
ample, this implies that parameter information can be perfectly pre-
dicted and residual error is entirely constrained to the normal direc-
tion, i.e., contains only geometric information. Note that because
of the local frames normal mesh representations are non-linear.

Of course we cannot expect a given arbitrary input mesh to pos-
sess a hierarchical representation which is normal. Instead we de-



scribe an algorithm which takes an arbitrary topology input mesh
and produces a semi-regular normal mesh describing the same ge-
ometry. Aside from a small amount of base domain information,
our normal mesh transform converts an arbitrary mesh from a 3
parameter representation into a purely scalar representation. We
demonstrate our algorithm by applying it to a number of models
and experimentally characterize some of the properties which make
normal meshes so attractive for computations.

The study of normal meshes is of interest for a number of rea-
sons: they
• bring our computational representations back towards the “first

principles” of differential geometry;

• are very storage and bandwidth efficient, describing a surface
as a succinctly specified base shape plus a hierarchical normal
map;

• are an excellent representation for compression since all vari-
ance is “squeezed” into a single dimension.

1.2 Related Work
Efficient representations for irregular connectivity meshes have
been pursued by a number of researchers. This research is mo-
tivated by our ability to acquire densely sampled, highly detailed
scans of real world objects [19] and the need to manipulate these ef-
ficiently. Semi-regular—or subdivision connectivity—meshes offer
many advantages over the irregular setting due of their well devel-
oped mathematical foundations and data structure simplicity [23];
many powerful algorithms require their input to be in semi-regular
form [21, 22, 25, 1]. This has led to the development of a number
of algorithms to convert existing irregular meshes to semi-regular
form through remeshing. Eck et al. [9] use Voronoi tiling and har-
monic maps to build a parameterization and remesh onto a semi-
regular mesh. Krischnamurthy and Levoy [15] demonstrated user
driven remeshing for the case of bi-cubic patches, while Lee et
al. [18] proposed an algorithm based on feature driven mesh reduc-
tion to develop smooth parameterizations of meshes in an automatic
fashion. These methods use the parameterization subsequently for
semi-regular remeshing.

Our work is related to these approaches in that we also construct
a semi-regular mesh from an arbitrary connectivity input mesh.
However, in previous work prediction residuals, or detail vectors,
were not optimized to have properties such as normality. The main
focus was on the establishment of a smooth parameterization which
was then semi-regularly sampled.

The discussion of parameter versus geometry information orig-
inates in the work done on irregular curve and surface subdivi-
sion [4] [13] and intrinsic curvature normal flow [5]. There it is
shown that unless one has the correct parameter side information,
it is not possible to build an irregular smooth subdivision scheme.
While such schemes are useful for editing and texturing applica-
tions, they cannot be used for succinct representations because the
parameter side-information needed is excessive. In the case of nor-
mal meshes these issues are entirely circumvented in that all pa-
rameter information vanishes and the mesh is reduced to purely ge-
ometric, i.e., scalar in the normal direction, information.

Finally, we mention the connection to displacement maps [3],
and in particular normal displacement maps. These are popular
for modeling purposes and used extensively in high end render-
ing systems such as RenderMan. In a sense we are solving here
the associated inverse problem. Given some geometry, find a sim-
pler geometry and a set of normal displacements which together are
equivalent to the original geometry. Typically, normal displacement
maps are single level, whereas we aim to build them in a fully hi-
erarchical way. For example, single level displacements maps were
used in [15] to capture the fine detail of a 3D photography model.
Cohen et al. [2] sampled normal fields of geometry and maintained

these in texture maps during simplification. While these approaches
all differ significantly from our interests here, it is clear that maps
of this and related nature are of great interest in many contexts.

In independent work, Lee et al. pursue a goal similar to ours [17].
They introduce displaced subdivision surfaces which can be seen as
a two level normal mesh. Because only two levels are used, the base
domain typically contains more triangles than in our case. Also the
normal offsets are oversampled while in our case, the normal offsets
are critically sampled.

2 Normal Polylines
Before we look at surfaces and normal meshes, we introduce some
of the concepts using curves and normal polylines. A curve in
the plane is described by a pair of parametric functionss(t) =
(x(t), y(t)) with t ∈ [0, 1]. We would like to describe the points on
the curve with a single scalar function. In practice one uses poly-
lines to approximate the function. Letl(p,p′) be the linear segment
between the pointsp andp′. A standard way to build a polyline
multiresolution approximation is to sample the curve at pointssj,k

wheresj,k = sj+1,2k and define thejth level approximation as

Lj =
⋃

0≤k<2j

l(sj,k, sj,k+1).

To move fromLj to Lj+1 we need to insert the pointssj+1,2k+1

(Figure 2, left). Clearly this requires two scalars: the two coordi-
nates ofsj+1,2k+1. Alternatively one could compute the difference
sj+1,2k+1 − m between the new point and some predicted point
m, say the midpoint of the neighboring pointssj,k and sj,k+1.
This detail has a tangential componentm − b and a normal com-
ponentb − sj+1,2k+1. The normal component is thegeometric
information while the tangential component is theparameterinfor-
mation. The way to build polylines that can be described with one
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sj,k

m
b

sj+1,2k+1

sj+1,2k+1
sj,k

b = m
sj,k+1

sj,k+1

Figure 2:Removing one pointsj+1,2k+1 in a polyline multiresolu-
tion and recording the difference with the midpointm. On the left a
general polyline where the detail has both a normal and a tangen-
tial component. On the right a normal polyline where the detail is
purely normal.

scalar per point, is to make sure that the parameter information is
always zero, i.e.,b = m, see Figure 2, right. If the trianglesj,k,
sj+1,2k+1, sj,k+1 is Isosceles, there is no parameter information.
Consequently we say that a polyline is normal if a multiresolution
structure exists where every removed point forms an Isosceles trian-
gle with its neighbors. Then there is zero parameter information and
the polyline can be represented with one scalar per point, namely
the normal component of the associated detail.

For a general polyline the removed triangles are hardly ever ex-
actly Isosceles and hence the polyline is not normal. Below we
describe a procedure to build a normal polyline approximation for
any continuous curve. The easiest is to start building Isosceles tri-
angles from the coarsest level. Start with the first basel(s0,0, s0,1),
see Figure 3. Next take its midpoint and check where the normal
direction crosses the curve. Because the curve is continuous, there
has to be at least one such point. If there are multiple pick any one.



3,3

0,0 0,1

1,1
2,1

Figure 3: Construction of a normal polyline. We start with the
coarsest level and each time check where the normal to the midpoint
crosses the curve. For simplicity only the indices of thesj,k points
are shown and only certain segments are subdivided. The polyline
(0, 0)−(2, 1)−(3, 3)−(1, 1)−(0, 1) is determined by its endpoints
and three scalars, the heights of the Isosceles triangles.

Call this points1,1 and define the first triangle. Now split the curve
into two parts and repeat the procedure on each subcurve. Each
time sj+1,2k+1 is found where the normal to the midpoint ofsj,k

andsj,k+1 crosses the portion of the curve betweensj,k andsj,k+1.
Thus any continuous curve can be approximated arbitrarily closely
with a normal polyline. The result is a series of polylinesLj all of
which are normal with respect to midpoint prediction. Effectively
each level is parameterized with respect to the one coarser level.
Because the polylines are normal, only a single scalar value, the
normal component, needs to be recorded for each point. We have a
polyline with no parameter information.

One can also consider normal polylines with respect to fancier
predictors. For example one could compute a base point and nor-
mal estimate using the well known 4 point rule. Essentially any
predictor which only depends on the coarser level is allowed. For
example one can also use irregular schemes [4]. Also one does not
need to follow the standard way of building levels by downsam-
pling every other point, but instead could take any ordering. This
leads to the following definition of a normal polyline:

Definition 1 A polyline is normal if a removal order of the points
exists such that each removed point lies in the normal direction from
a base point, where the normal direction and base point only de-
pend on the remaining points.

Hence a normal polyline is completely determined by a scalar com-
ponent per vertex.

Normal polylines are closely related to certain well known frac-
tal curves such as the Koch Snowflake1, see Figure 4. Here each
time a line segment is divided into three subsegments. The left and
right get a normal coefficient of zero, while the middle receives
a normal coefficient such that the resulting triangle is equilateral.
Hence the polylines leading to the snowflake are normal with re-
spect to midpoint subdivision.

Figure 4:Four normal polylines converging to the Koch snowflake.

1Niels Fabian Helge von Koch (Sweden, 1870-1924)

There is also a close connection with wavelets. The normal co-
efficients can be seen as a piecewise linear wavelet transform of
the original curve. Because the tangential components are always
zero there are half as many wavelet coefficients as there are origi-
nal scalar coefficients. Thus one saves 50% memory right away. In
addition of course the wavelets have their usual decorrelation prop-
erties. In the functional case the above transform corresponds to an
unlifted interpolating piecewise linear wavelet transform as intro-
duced by Donoho [6]. There it is shown that interpolating wavelets
with no primal, but many dual moments are well suited for smooth
functions. Unlike in the function setting, not all wavelets from the
same levelj have the same physical scale. Here the scale of each
coefficient is essentially the length of the base of its Isosecles trian-
gle.

3 Normal Meshes

We begin by establishing terminology. A triangle meshM is a
pair (P ,K), whereP is a set ofN point positionsP = {pi =
(xi, yi, zi) ∈ R3 | 1 ≤ i ≤ N}, andK is anabstract simplicial
complexwhich contains all the topological, i.e., adjacency infor-
mation. The complexK is a set of subsets of{1, . . . , N}. These
subsets come in three types: vertices{i}, edges{i, j}, and faces
{i, j, k}. Two verticesi andj areneighborsif {i, j} ∈ E . The
1-ring neighbors of a vertexi form a setV(i) = {j | {i, j} ∈ E}.

We can derive a definition of normal triangle meshes inspired
by the curve case. Consider a hierarchy of triangle meshesMj

built using mesh simplification with vertex removals. These meshes
are nested in the sense thatPj ⊂ Pj+1. Take a removed vertex
pi ∈ Pj+1 \ Pj . For the mesh to be normal we need to be able to
find a base pointb and normal directionN that only depend onPj ,
so thatpi − b lies in the directionN . This leads to the following
definition.

Definition 2 A meshM is normal in case a sequence of vertex
removals exists so that each removed vertex lies on a line defined
by a base point and normal direction which only depends on the
remaining vertices.

Thus a normal mesh can be described by a small base domain and
one scalar coefficient per vertex.

As in the curve case, a mesh is in general not normal. The chance
that the difference between a removed point and a predicted base
point lies exactly in a direction that only depends on the remaining
vertices is essentially zero. Hence the only way to obtain a normal
mesh is to change the triangulation. We decide to use semi-regular
meshes, i.e., meshes whose connectivity is formed by successive
quadrisection of coarse base domain faces.

As in the curve setting, the way to build a normal mesh is to
start from the coarse level or base domain. For each new vertex we
compute a base point as well as a normal direction and check where
the line defined by the base point and normal intersects the surface.
The situation, however, is much more complex than in the curve
case for two reasons: (1) There could be no intersection point. (2)
There could be many intersection points, but only one correct one.

In case there are no intersection points, strictly speaking no fully
normal mesh can be built from this base domain. If that happens,
we relax the definition of normal meshes some and allow a small
number of cases where the new points do not lie in the normal di-
rection. Thus the algorithm needs to find a suitable non-normal lo-
cation for the new point. In case there are many intersection points
the algorithm needs to figure out which one is the right one. If the
wrong one is chosen the normal mesh will start folding over itself
or leave creases. Any algorithm which blindly picks an intersection
point is doomed.



Parameterization In order to find the right piercing point or
suggest a good alternate, one needs to be able to easily navigate
around the surface. The way to do this is to build a smooth pa-
rameterization of the surface region of interest. This is a basic
building block of our algorithm. Several parameterization meth-
ods have been proposed and our method takes components from
each of them: mesh simplification and polar maps from MAPS [18],
patchwise relaxation from [9], and a specific smoothness functional
similar to the one used in [10] and [20]. The algorithm will use lo-
cal parameterizations which need to be computed fast and robustly.
Most of them are temporary and are quickly discarded unless they
can be used as a starting guess for another parameterization.

Consider a regionR of the mesh homeomorphic to a disc that
we want to parameterize onto a convex planar regionB, i.e., find a
bijective mapu : R → B. The mapu is fixed by a boundary con-
dition ∂R → ∂B and minimizes a certain energy functional. Sev-
eral functionals can be used leading to, e.g., conformal or harmonic
mappings. We take an approach based on the work of Floater [10].
In short, the functionu needs to satisfy the following equation in
the interior:

u(pi) =
∑

k∈V(i)

αiku(pk), (1)

whereV(i) is the 1-ring neighborhood of the vertexi and the
weights αik come from the shape-preserving parameterization
scheme [10]. The main advantage of the Floater weights is that
they are always positive, which, combined with the convexity of
the parametric region, guarantees that no triangle flipping can oc-
cur within the parametric domain. This is crucial for our algorithm.
Note that this is not true in general for harmonic maps which can
have negative weights. We use the iterative biconjugate gradient
method [12] to obtain the solution to the system (1). Given that we
often have a good starting guess this converges quickly.

Algorithm Our algorithm consists of 7 stages which are de-
scribed below, some of which are shown for the molecule model
in Figure 5. The molecule is a highly detailed and curved model.
Any naive procedure for finding normal meshes is very unlikely to
succeed.

The first four stages of the algorithm prepare the ground for the
piercing procedure and build the net of curves splitting the original
mesh into triangular patches that are in one-to-one correspondence
with the faces of the base mesh, i.e., the coarsest level of the semi-
regular mesh we build.

1. Mesh simplification: We use the Garland-Heckbert [11]
simplification based on half-edge collapses to create a mesh hierar-
chy(Pj ,Kj). We use the coarsest level(P0,K0) as an initial guess
for our base domain(Q0,K0). The first image of Figure 5 shows
the base domain for the molecule.

2. Building an initial net of curves: The purpose of this step
is to connect the vertices of the base domain with a net of non in-
tersecting curves on the different levels of the mesh simplification
hierarchy. This can easily be done using the MAPS parameteri-
zation [18]. MAPS uses polar maps to build a bijection between a
1-ring and its retriangulation after the center vertex is removed. The
concatenation of these maps is a bijective mapping between differ-
ent levels(Pj ,Kj) in the hierarchy. The desired curves are simply
the image of the base domain edges under this mapping. Because
of the bijection no intersection can occur. Note that the curves start
and finish at a vertex of the base domain, but need not follow the
edges of the finer triangulation, i.e., they can cut across triangles.
These curves define a network of triangular shaped patches corre-
sponding to the base domain triangles. Later we will adjust these
curves on some intermediate level and again use MAPS to propa-
gate these changes to other levels. The top middle image of Figure 5
shows these curves for some intermediate level of the hierarchy.

3. Fixing the global vertices: A normal mesh is almost com-
pletely determined by the base domain. One has to choose the base
domain verticesQ0 very carefully to reduce the number of non-
normal vertices to a minimum. The coarsest level of the mesh sim-
plification P0 is only a first guess. In this section we describe a
procedure for repositioning the global verticesqi with {i} ∈ K0.
We impose the constraint that theqi needs to coincide with some
vertexpk of the original mesh, but not necessarilypi.

The repositioning is typically done on some intermediate levelj.
Take a base domain vertexqi. We build a parameterization from
the patches incident to vertexqi to a disk in the plane, see Fig-
ure 6. Boundary conditions are assigned using arclength parame-
terization, and parameter coordinates are iteratively computed for
each levelj vertex inside the shaded region. It is now easy to re-
place the pointqi with any level point fromPj in the shaded region.
In particular we let the newq′

i be the point ofPj that in the param-
eter domain is closest to the center of the disk. The exact center of
the disk, in general, does not correspond to a vertex of the mesh.

Once a new positionq′
i is chosen, the curves can be redrawn by

taking the inverse mapping of straight lines from the new point in
the parameter plane. One can keep iterating this procedure, but we
found that if suffices to cycle once through all base domain vertices.

We also provide for a user controlled repositioning. Then the
user can replace the center vertex with anyPj point in the shaded
region. The algorithm again uses the parameterization to recompute
the curves from that point.

The top right of Figure 5 shows the repositioned vertices. Notice
how some of them like the rightmost one have moved considerably.
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Figure 6:Base domain vertex repositioning. Left: original patches
aroundqi, middle: parameter domain, right: repositionedqi and
new patch boundaries. This is replaced with the vertex whose pa-
rameter coordinate are the closest to the center. The inverse map-
ping (right) is used to find the new positionq′

i and the new curves.

4. Fixing the global edges: The image of the global edges
on the finest level will later be the patch boundaries of the normal
mesh. For this reason we need to improve the smoothness of the as-
sociated curves at the finest level. We use a procedure similar to [9].
For each base domain edge{i, k} we consider the region formed on
the finest level mesh by its two incident patches. Letl andm be the
opposing global vertices. We then compute a parameter function
ρ within the diamond-shaped region of the surface. The boundary
condition is set asρ(qi) = ρ(qk) = 0, ρ(ql) = 1, ρ(qm) = −1,
with linear variation along the edges. We then compute the param-
eterization and let its zero level set be our new curve. Again one
could iterate this procedure till convergence but in practice one cy-
cle suffices. The curves of the top right image in Figure 5 are the
result of the curve smoothing on the finest level.

Note that a similar result can be achieved by allowing the user to
position the global vertices and draw the boundaries of the patches
manually. Indeed, the following steps of the algorithm do not de-
pend on how the initial net of surface curves is produced.



Figure 5: The entire procedure shown for the molecule model. 1. Base domain. 2. Initial set of curves. 3. Global vertex repositioning 4.
Initial Parameterization 5. Adjusting parameterization 6. Final normal mesh. (HIV protease surface model courtesy of Arthur Olson, The
Scripps Research Institute)

5. Initial parameterization: Once the global vertices and
edges are fixed, one can start filling in the interior. This is done
by computing the parameterization of each patch to a triangle while
keeping the boundary fixed. The parameter coordinates from the
last stage can serve as a good initial guess. We now have a smooth
global parameterization. This parameterization is shown in the bot-
tom left of Figure 5. Each triangle is given a triangular checker-
board texture to illustrate the parameterization.

6. Piercing: In this stage of the algorithm we start building
the actual normal mesh. The canonical step is for a new vertex of
the semi-regular mesh to find its position on the original mesh. In
quadrisection every edge of levelj generates a new vertex on level
j + 1. We first compute a base point using interpolating Butter-
fly subdivision [8] [24] as well as an approximation of the normal.
This defines a straight line. This line may have multiple intersec-
tion points in which case we need to find the right one, or it could
have none, in which case we need to come up with a good alternate.

Suppose that we need to produce the new vertexq that lies
halfway along the edge{a, c} with incident triangles{a, c, b} and
{c, a,d}, see Figure 7. Let the two incident patches form the re-
gionR.

Build the straight lineL defined by the base points predicted by
the Butterfly subdivision rule [24] and the direction of the normal
computed from the coarser level points. We find all the intersection
points ofL with the regionR by checking all triangles inside.

If there is no intersection we take the pointv that lies midway
between the pointsa and c in the parameter domain:u(v) =
(u(a) + u(c))/2. This is the same point a standard parameteri-
zation based remesher would use. Note that in this case the detail
vector is non-normal and its three components need to be stored.

In the case when there exist several intersections of the mesh re-
gion R with the piercing lineL we choose the intersection point
that is closest to the pointu(v) in the parameter domain. Let us
denote byu(q) the parametric coordinates of that piercing point.
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Figure 7:Upper left: piercing, the Butterfly point iss, the surface is
pierced at the pointq, the parametrically suggested pointv lies on
the curve separating two regions of the mesh. Right: parameter do-
main, the pierced point falls inside the aperture and gets accepted.
Lower left: the parameterization is adjusted to let the curve pass
throughq.

We accept this point as a valid point of the semi-regular mesh if
‖u(q) − u(v)‖ < κ‖u(a) − u(v)‖, whereκ is an “aperture” pa-
rameter that specifies how much the parameter value of a pierced



point is allowed to deviate from the center of the diamond. Oth-
erwise, the piercing point is rejected and the mesh takes the point
with the parameter valueu(v), resulting in a non-normal detail.

7. Adjusting the parameterization: Once we have a new
piercing point, we need to adjust the parameterization to reflect this.
Essentially, the adjusted parameterizationu should be such that the
piercing point has the parametersu(v) =: u(q). When impos-
ing such an isolated point constraint on the parameterization, there
is no mathematical guarantee against flipping. Hence we draw a
new piecewise linear curve throughu(q) in the parameter domain.
This gives a new curve on the surface which passes throughq, see
Figure 7. We then recompute the parameterization for each of the
patches onto a triangle separately. We use a piecewise linear bound-
ary condition with the half point atq on the common edge.

When all the new midpoints for the edges of a face of levelj
are computed, we can build the faces of levelj + 1. This is done
by drawing three new curves inside the corresponding region of the
original mesh, see Figure 8. Before that operation happens we need
to ensure that a valid parameterization is available within the patch.
The patch is parameterized onto a triangle with three piecewise lin-
ear boundary conditions each time putting the new points at the
midpoint. Then the new points are connected in the parameter do-
main which allows us to draw new finer level curves on the original
mesh. This produces a metamesh similar to [16], so that the new
net of curves replicates the structure of the semi-regular hierarchy
on the surface of the original. The construction of the semi-regular
mesh can be done adaptively with the error driven procedure from
MAPS [18]. An example of parameterization adjustment after two
levels of adaptive subdivision is shown in the bottom middle of Fig-
ure 5. Note that as the regions for which we compute parameteriza-
tions become smaller, the starting guesses are better and the solver
convergence becomes faster and faster.

a b

c u(a) u(c)

u(b)

Figure 8: Face split: Quadrisection in the parameter plane (left)
leads to three new curves within the triangular patch (right).

The aperture parameterκ of the piercing procedure provides
control over how much of the original parameterization is preserved
in the final mesh and consequently, how many non-normal details
will appear. Atκ = 0 we build anon-normalmesh entirely based
on the original global parameterization. Atκ = 1 we attempt to
build a purelynormal mesh independent of the parameterization.
In our experience, the best results were achieved when the aper-
ture was set low (0.2) at the coarsest levels, and then increased to
0.6 on finer levels. On the very fine levels of the hierarchy, where
the geometry of the semi-regular meshes closely follows the origi-
nal geometry, one can often simply use a naive piercing procedure
without parameter adjustment.

One may wonder if the continuous readjustment of parameteri-
zations is really necessary. We have tried the naive piercing pro-
cedure without parameterization from the base domain and found
that it typically fails on all models. An example is Figure 9 which
shows 4 levels of naive piercing for the torus starting from a 102
vertex base mesh. Clearly, there are several regions with flipped
and self-intersecting triangles. The error is about 20 times larger
than the true normal mesh.

Figure 9:Naive piercing procedure. Clearly, several regions have
flipped triangles and are self-intersecting.

Dataset Size Base Normal Not normal %L2 Time
mesh size (%) error (min)

Feline 49864 156 40346 729 (1.8%) .015 4
Molecule 10028 37 9521 270 (2.8%) .075 1.5
Rabbit 16760 33 8235 196 (2.4%) .037 2
Torus3 5884 98 5294 421 (8.0%) .03 3
Skull 20002 112 25376 817 (3.2%) .02 2.5
Horse 48485 234 59319 644 (1.1%) .004 6.8

Table 1:Summary of normal meshing results for different models.
The normal mesh is computed adaptively and contains roughly the
same number of triangles as the original mesh. The relativeL2

errors are computed with the I.E.I.-CNR Metro tool. The times are
reported on a 700MHz Pentium III machine.

4 Results
We have implemented the algorithms described in the preceding
section, and performed a series of experiments in which normal
meshes for various models were built. The summary of the results
is given in Table 1. As we can see from the table, the normal semi-
regular meshes have very high accuracy and hardly any non normal
details.

One interesting feature of our normal meshing procedure is the
following: while the structure of patches comes from performing
simplification there are far fewer restrictions on how coarse the
base mesh can be. Note for example that the skull in Figure 1 was
meshed with the tetrahedron as base mesh. This is largely due to
the robust mesh parameterization techniques used in our approach.

Figure 10 shows normal meshes for rabbit, torus, feline, and
skull, as well as close-up of feline (bottom left) normal mesh. Note
how smooth the meshes are across global edges and global vertices.
This smoothness mostly comes from the normality, not the param-
eterization. It is thus an intrinsic quantity.

One of the most interesting observations coming from this work
is that locally the normal meshes do not differ much from the non-
normal ones, while offering huge benefits in terms of efficiency of
representation. For example, Table 2 shows how the “aperture pa-
rameter”κ that governs the construction of normal meshes affects
the number of detail coefficients with non-trivial tangential com-
ponents for the model of the three hole torus (these numbers are
typical for other models as well). In particular, we see that already
a very modest acceptance strategy (κ = 0.2) gets rid of more than
90% of the tangential components in the remeshed model, and the
more aggressive strategies offer even more benefits without affect-
ing the error of the representation.

5 Summary and Conclusion
In this paper we introduce the notion ofnormal meshes. Normal
meshes are multiresolution meshes in which vertices can be found
in the normal direction, starting from some coarse level. Hence
only one scalar per vertex needs to be stored. We presented a robust



κ normal error (10−4)

0 0% 1.02
0.2 91.9% 1.05
0.4 92.4% 1.04

best 98.3% 1.02

Table 2: The relation between the acceptance strategy during the
piercing procedure and the percentage of perfectly normal details
in the hierarchy. The original model has 5884 vertices, all the nor-
mal meshes have 26002 vertices (4 levels uniformly), and the base
mesh contained 98 vertices. The best strategy in the last line used
κ = 0.2 on the first three levels and afterward always accepted the
piercing candidates.

algorithm for computing normal semi-regular meshes of any input
mesh and showed that it produces very smooth triangulations on a
variety of input models.

It is clear that normal meshes have numerous applications. We
briefly discuss a few.
Compression Usually a wavelet transform of a standard mesh
has three components which need to be quantized and encoded. In-
formation theory tells us that the more non uniform the distribution
of the coefficients the lower the first order entropy. Having 2/3 of
the coefficients exactly zero will further reduce the bit budget. From
an implementation viewpoint, we can almost directly hook the nor-
mal mesh coefficients up to the best known scalar wavelet image
compression code.
Filtering It has been shown that operations such as smoothing,
enhancement, and denoising can be computed through a suitable
scaling of wavelet coefficients [7]. In a normal mesh any such al-
gorithm will require only 1/3 as many computations. Also large
scaling coefficients in a standard mesh will introduce large tangen-
tial components leading to flipped triangles. In a normal mesh this
is much less likely to happen.
Texturing Normal semi-regular meshes are very smooth inside
patches, across global edges, and around global vertices even when
the base domain is exceedingly coarse, cf. the skull model. The im-
plied parameterizations are highly suitable for all types of mapping
applications.
Rendering Normal maps are a very powerful tool for decora-
tion and enhancement of otherwise smooth geometry. In particular
in the context of bandwidth bottlenecks it is attractive to be able to
download a normal map into hardware and only send smooth co-
efficient updates for the underlying geometry. The normal mesh
transform effectively solves the associated inverse problem: con-
struct a normal map for a given geometry.

The concept of normal meshes opens up many new areas of re-
search.
• Our algorithm uses interpolating subdivision to find the base

point. Building normal meshes with respect to approximating
subdivision is not straightforward.

• The theoretical underpinnings of normal meshes need to be
studied. Do continuous variable normal descriptions of surfaces
exist? What about stability? What about connections with cur-
vature normal flow which acts to reduce normal information?

• We only addressed semi-regular normal meshes here, while the
definition allows for the more flexible setting of progressive ir-
regular mesh hierarchies.

• Purely scalar compression schemes for geometry need to be
compared with existing coders.

• Generalize normal meshes to higher dimensions. It should be
possible to represent aM dimensional manifold inN dimen-
sions withN − M variables as opposed to the usualN .

• The current implementation only works for surfaces without
boundaries and does not deal with feature curves. We will ad-
dress these issues in our future research.
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cessing for Meshes.Proceedings of SIGGRAPH 99(1999), 325–334.
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Trends in Computer Graphics

� Rich and realistic graphics with detailed models in
complex scenes.

� Sophisticated appearance models that go beyond
texture-mapped objects.

Digital Michelangelo, Stanford

Jurrasic Park, ILM

Geri’s Game, Pixar

Rendering with Natural Light,
Paul DeBevec
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Issues

� Our capacity to create high quality models is limited.
� Art production is the bottleneck.
� Real-world object appearances can be very complex.

� Laser-range scanning and computer vision are a means
for capturing the real world.

� Scanned high-resolution models contain a lot of small
triangles.
� Project to < 1 pixel.

� To accurately capture appearance requires to store a lot
of data per triangle.
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Point-Based Computer Graphics

� Point-based models allow us to efficiently acquire and
display complex 3D objects.

� We capture shape and appearance from images.
� We call these point-based models “3D images”.
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Our Goals

� Develop a systems architecture to capture and display
complex models with:
� automatic acquisition,
� transmission,
� and interactive rendering.

� Display complex object appearances (specularity and
transparency) under novel lighting conditions.

� Render point-based volume and surface data using the
same framework.
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Outline

� 3D Images
� Acquisition
� Display

� Surfels as Rendering Primitives
� EWA Volume and Surface Splatting

� Conclusions
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Acquisition

� From images / video of real objects.
� With mounted or handheld camera.
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The System Prototype

light

light

turntable

camera

turntable

camera

camera
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Three System Implementations

V1.0 (July-Oct 2000) V2.0 (Oct-Dec 2000)
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Current System



Slide 11
SIGGRAPH 2001, New Directions in Shape Representations

Current System
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Current System



Slide 13
SIGGRAPH 2001, New Directions in Shape Representations

Image-Based Visual Hull
[Matusik et al., SIGGRAPH 2000]
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Why use Visual Hulls?

� They rely on the simplest CV algorithms.
� They can be computed robustly.
� They can be computed efficiently.
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Approximate Geometry

� The approximate visual hull is augmented by radiance
data to render concavities, reflections, and transparency.
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Surface Light Field

� A surface light field is a function that assigns a color to
each ray originating on a surface. [Wood et al., 2000]

� We store up to 100 rays and colors per surface point.
[Matusik, Pfister, Beardsley, McMillan, 2001]
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Shading Algorithm

� A view-dependent strategy.
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IBVH Acquisition

� Advantages:
� Very robust for all kinds of objects.
� Simultaneous acquisition of shape and appearance.

� Limitations:
� Requires very good camera calibration.
� Nearest neighbor shading algorithm can be improved.



Slide 19
SIGGRAPH 2001, New Directions in Shape Representations

Outline

� 3D Images
� Acquisition
�Display

� Surfels as Rendering Primitives
� EWA Volume and Surface Splatting

� Conclusions
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Related Work

� Texture mapping
� Image-based Rendering
� Volume Graphics (“surface voxels”)
� Point Sample Rendering

� Animatek, www.animatek.com
� Levoy and Whitted, 1985
� Grossman and Dally, 1999
� Rusinkiewicz and Levoy, 2000

� Texture Mapping
� Heckbert, 1986
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Surfels as Rendering Primitives

� Typical triangles in complex 3D geometry models project
to < 1 pixel.

� Point samples (surfels) allow us to efficiently render
complex 3D objects.

[Pfister, Zwicker, van Baar, Gross, SIGGRAPH 2000]
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Data Structure - LDC Tree

� Hierarchical octree-like data structure for progressive
transmission and rendering.

Level 0

Level 1

Level 2
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Rendering

� Traverse tree top to bottom.
� Visibility culling of blocks outside the viewing frustum.
� Forward projection of surfels from object to screen

space using incremental forward warping.
    [Grossman, Dally 99]
� Visibility resolution using a z-buffer.
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Potential Problems

� After projection the image may contain holes.

� Texture and edge aliasing.
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Surface Texture Function

� Texture function on the surface of a point-based object
is a sum of 2D reconstruction kernels.
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Rendering Framework

Object Space

Sample

Screen Space

Warp

Screen Space

Filter

Screen Space
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Rendering Framework

� Express texture functions as sums of reconstruction
kernels.

� Forward projection of reconstruction kernels to screen
space
� Footprint.

� Bandlimit the continuous image function by low-pass
filtering the individual reconstruction kernels.

� Footprint ⊗ low-pass filter = resampling kernel.
� Accumulation of resampling kernels in screen space.
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Surface Splatting
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Volume Splatting

� Volume is a field of 3D reconstruction kernels.
� One kernel at each voxel.

� Pre-integrate the 3D reconstruction kernels into 2D
footprints.

[Westover, 1989]

3D Kernel ∫
ℜ

= ξξ d),y,x(r)y,x(q kk

2D Footprint
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Volume Resampling Filter

� We make several simplifying assumptions to combine
the low-pass filter with the footprint.
� Constant extinction and emission inside each kernel.

� Resulting resampling filters are rendered in back-to-front
order and blended into the image buffer.

))(hq(goc))(hI( kkk
k

k xx ⊗≈⊗ ∑ λλ

Emission

Extinction

2D Resampling Filter

(Footprint ⊗ Low-Pass Filter)
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Elliptical Gaussian Kernels

� We choose elliptical Gaussians as reconstruction kernels
and low-pass filters.

� They are closed under affine mappings and convolution.

� The integration of a 3D Gaussian is a 2D Gaussian.

Slide 32
SIGGRAPH 2001, New Directions in Shape Representations

EWA Resampling Filter

� We can compute an analytic formulation of the EWA
resampling filter in screen space.

� The EWA resampling filter combines the footprint with a
screen space (Gaussian) low-pass filter.
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Algorithm

For each point in BTF order
     Compute the warp and projection matrix
     Project point to screen space
     Compute the resampling filter
     Rasterize resampling filter
     Blend pixels into image
For each pixel in the image

Shade pixel

Slide 34
SIGGRAPH 2001, New Directions in Shape Representations

EWA Volume Splatting

� Volume renderings using the EWA resampling filter.

� Compare to uniformly scaled footprints [Swan et al. 1997]

[Zwicker, Pfister, van Baar, Gross, 2001]
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EWA Volume and Surface Splatting

� Render volume iso-surfaces with flattened kernels for
better quality.

� Volume rendering and surface rendering using the same
algorithm.
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EWA Surface Splatting

� Texture anti-aliasing and edge anti-aliasing.
� Transparency.

[Zwicker, Pfister, van Baar, Gross, SIGGRAPH 2001]
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EWA Volume and Surface Splatting

� Advantages:
� Correct antialiasing without excessive blurring.
� Works for rectilinear and irregular volumes.
� Combined visualization of volume and surface data.
� Amenable to parallelism and hardware acceleration.

� Limitations:
� Currently about 0.5 to 15 seconds per frame.
� Not efficient for flat surfaces with uniform color.
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Conclusions

� Image-based visual hulls combined with surface
lightfields provide realistic 3D object models.

� EWA volume and surface splatting provides a unifying
rendering framework for volume and surface samples.

� Point-based computer graphics and visualization is able
to capture and render complex objects efficiently.
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Future Work

� Improved 3D scanners.
� Compression and progressive transmission.
� Deformable point-sample models.
� Custom hardware for EWA splatting.
� Virtual humans and 3D teleconferencing.
� Virtual scenes and mixed reality.
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Surface Splatting

Matthias Zwicker � Hanspeter Pfister y Jeroen van Baary Markus Gross�

Figure 1: Surface splatting of a scan of a human face, textured terrain, and a complex point-sampled object with semi-transparent surfaces.

Abstract
Modern laser range and optical scanners need rendering techniques
that can handle millions of points with high resolution textures.
This paper describes a point rendering and texture filtering tech-
nique called surface splatting which directly renders opaque and
transparent surfaces from point clouds without connectivity. It
is based on a novel screen space formulation of the Elliptical
Weighted Average (EWA) filter. Our rigorous mathematical anal-
ysis extends the texture resampling framework of Heckbert to ir-
regularly spaced point samples. To render the points, we develop a
surface splat primitive that implements the screen space EWA filter.
Moreover, we show how to optimally sample image and procedural
textures to irregular point data during pre-processing. We also com-
pare the optimal algorithm with a more efficient view-independent
EWA pre-filter. Surface splatting makes the benefits of EWA tex-
ture filtering available to point-based rendering. It provides high
quality anisotropic texture filtering, hidden surface removal, edge
anti-aliasing, and order-independent transparency.

Keywords: Rendering Systems, Texture Mapping, Antialiasing,
Image-Based Rendering, Frame Buffer Algorithms.

1 Introduction
Laser range and image-based scanning techniques have produced
some of the most complex and visually stunning models to date [9].
One of the challenges with these techniques is the huge volume of

�ETH Zürich, Switzerland. Email: [zwicker,grossm]@inf.ethz.ch
yMERL, Cambridge, MA. Email: [pfister,jeroen]@merl.com

point samples they generate. A commonly used approach is gener-
ating triangle meshes from the point data and using mesh reduction
techniques to render them [7, 2]. However, some scanned meshes
are too large to be rendered interactively [9], and some applications
cannot tolerate the inherent loss in geometric accuracy and texture
fidelity that comes from polygon reduction.

Recent efforts have focused on direct rendering techniques for
point samples without connectivity [16, 4, 15]. These techniques
use hierarchical data structures and forward warping to store and
render the point data efficiently. One important challenge for point
rendering techniques is to properly reconstruct continuous surfaces
from the irregularly spaced point samples while maintaining the
high texture fidelity of the scanned data. In addition, the point ren-
dering should correctly handle hidden surface removal and trans-
parency.

In this paper we propose a new point rendering technique called
surface splatting, focusing on high quality texture filtering. In con-
trast to previous point rendering approaches, surface splatting uses
a novel screen space formulation of the Elliptical Weighted Average
(EWA) filter [3], the best anisotropic texture filtering algorithm for
interactive systems. Extending the framework of Heckbert [6], we
derive a screen space form of the EWA filter for irregularly spaced
point samples without global texture parameterization. This makes
surface splatting applicable to high-resolution laser range scans, ter-
rain with high texture detail, or point-sampled geometric objects
(see Figure 1). A modified A-buffer [1] provides hidden surface
removal, edge anti-aliasing, and order-independent transparency at
a modest increase in computation efforts.

The main contribution of this paper is a rigorous mathemati-
cal formulation of screen space EWA texture filtering for irregular
point data, presented in Section 3. We show how the screen space
EWA filter can be efficiently implemented using surface splatting
in Section 4. If points are used as rendering primitives for complex
geometry, we want to apply regular image textures to point sam-
ples during conversion from geometric models. Hence, Section 5
introduces an optimal texture sampling and pre-filtering method for
irregular point samples. Sections 6 and 7 present our modified A-
buffer method for order-independent transparency and edge anti-
aliasing, respectively. Finally, we discuss implementation, timings,
and image quality issues in Section 8.



2 Previous Work
Texture mapping increases the visual complexity of objects by map-
ping functions for color, normals, or other material properties onto
the surfaces [5]. If these texture functions are inappropriately band-
limited, texture aliasing may occur during projection to raster im-
ages. For a general discussion of this problem see [21]. Although
we develop our contributions along similar lines to the seminal
work of Heckbert [6], our approach is fundamentally different from
conventional texture mapping. We present the first systematic anal-
ysis for representing and rendering texture functions on irregularly
point-sampled surfaces.

The concept of representing objects as a set of points and using
these as rendering primitives has been introduced in a pioneering re-
port by Levoy and Whitted [10]. Due to the continuing increase in
geometric complexity, their idea has recently gained more interest.
QSplat [16] is a point rendering system that was designed to interac-
tively render large datasets produced by modern scanning devices.
Other researchers demonstrated the efficiency of point-based meth-
ods for rendering geometrically complex objects [4, 15]. In some
systems, point-based representations are temporarily stored in the
rendering pipeline to accelerate rendering [11, 17]. Surprisingly,
nobody has systematically addressed the problem of representing
texture functions on point-sampled objects and avoiding aliasing
during rendering. We present a surface splatting technique that can
replace the heuristics used in previous methods and provide supe-
rior texture quality.

Volume splatting [19] is closely related to point rendering and
surface splatting. A spherical 3D reconstruction kernel centered at
each voxel is integrated along one dimension into a 2D “footprint
function.” As each voxel is projected onto the screen, the 2D foot-
prints are accumulated directly into the image buffer or into image-
aligned sheet buffers. Some papers [18, 14] address aliasing caused
by insufficient resampling rates during perspective projections. To
prevent aliasing, the 3D reconstruction kernels are scaled using a
heuristic. In contrast, surface splatting models both reconstruct-
ing and band-limiting the texture function in a unified framework.
Moreover, instead of pre-integrating isotropic 3D kernels, it uses
oriented 2D kernels, providing anisotropic filtering for surface tex-
tures.

3 The Surface Splatting Framework
The basis of our surface splatting method is a model for the rep-
resentation of continuous texture functions on the surface of point-
based graphics objects, which is introduced in Section 3.1. Since
the 3D points are usually positioned irregularly, we use a weighted
sum of radially symmetric basis functions. With this model at hand,
we look at the task of rendering point-based objects as a concatena-
tion of warping, filtering, and sampling the continuous texture func-
tion. In Section 3.2 we extend Heckbert’s resampling theory [6]
to process point-based objects and develop a mathematical frame-
work of the rendering procedure. In Section 3.3 we derive an al-
ternative formulation of the EWA texture filter that we call screen
space EWA, leading to the surface splatting algorithm discussed in
Section 4. In Section 5, we describe how to acquire the texture
functions, which can be regarded as a scattered data approximation
problem. A continuous approximation of the unknown original tex-
ture function needs to be computed from an irregular set of sam-
ples. We distinguish between scanned objects with color per point
and regular textures that are explicitly applied to point-sampled ge-
ometry.

3.1 Texture Functions on Point-Based Objects
In conventional polygonal rendering, texture coordinates are usu-
ally stored per vertex. This enables the graphics engine to combine
the mappings from 2D texture space to 3D object space and from
there to 2D screen space into a compound 2D to 2D mapping be-

tween texture and screen space. Using this mapping, pixel colors
are computed by looking up and filtering texture samples in 2D
texture space at rendering time. There is no need for a sampled
representation of the texture in 3D object space. By contrast, the
compound mapping function is not available with point-based ob-
jects at rendering time. Consequently, we must store an explicit
texture representation in object space.

We represent point-based objects as a set of irregularly spaced
points fPkg in three dimensional object space without connectiv-
ity. A point Pk has a position and a normal. It is associated with
a radially symmetric basis function rk and coefficients wr

k; w
g
k; w

b
k

that represent continuous functions for red, green, and blue color
components. Without loss of generality, we perform all further cal-
culations with scalar coefficients wk. Note that the basis functions
rk and coefficients wk are determined in a pre-processing step, de-
scribed in Section 5.

We define a continuous function on the surface represented by
the set of points as illustrated in Figure 2. Given a point Q any-

3D object space

Pk

Q

u0

u1

2D parameterization
local parameterization

basis function rk(u-uk)
small neighborhood
around Q

P3P1

P2

1

Figure 2: Defining a texture function on the surface of a point-based
object.

where on the surface, shown left, we construct a local parameteri-
zation of the surface in a small neighborhood of Q, illustrated on
the right. The points Q and Pk have local coordinates u and uk,
respectively. We define the continuous surface function fc(u) as
the weighted sum:

fc(u) =
X
k2N

wkrk(u� uk). (1)

We choose basis functions rk that have local support or that are ap-
propriately truncated. Then u lies in the support of a small number
of basis functions. Note that in order to evaluate (1), the local pa-
rameterization has to be established in the union of these support ar-
eas only, which is very small. Furthermore, we will compute these
local parameterizations on the fly during rendering as described in
Section 4.

3.2 Rendering
Heckbert introduced a general resampling framework for texture
mapping and the EWA texture filter in [6]. His method takes a reg-
ularly sampled input function in source space, reconstructs a con-
tinuous function, warps it to destination space, and computes the
properly sampled function in destination space. Properly sampled
means that the Nyquist criterion is met. We will use the term screen
space instead of destination space.

We extend this framework towards a more general class of in-
put functions as given by Equation (1) and describe our rendering
process as a resampling problem. In contrast to Heckbert’s regular
setting, in our representation the basis functions rk are irregularly
spaced. In the following derivation, we adopt Heckbert’s notation.

Given an input function as in Equation (1) and a mapping x =
m(u) : R2 ! R

2 from source to screen space, rendering involves
the three steps illustrated in Figure 3:
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Figure 3: Warping, filtering, and sampling the texture function.

1. Warp fc(u) to screen space, yielding the warped, continuous
screen space signal gc(x):

gc(x) = (fc Æm
�1)(x) = fc(m

�1(x)),

where Æ denotes function concatenation.

2. Band-limit the screen space signal using a prefilter h, result-
ing in the continuous output function g0c(x):

g0c(x) = gc(x)
 h(x) =

Z
R2

gc(�)h(x� �)d�,

where 
 denotes convolution.

3. Sample the continuous output function by multiplying it with
an impulse train i to produce the discrete output g(x):

g(x) = g0c(x)i(x).

An explicit expression for the warped continuous output function
can be derived by expanding the above relations in reverse order:

g0c(x) =

Z
R2

h(x� �)
X
k2N

wkrk(m
�1(�)� uk)d�

=
X
k2N

wk�k(x), (2)

where �k(x) =

Z
R2

h(x� �)rk(m
�1(�)� uk)d�. (3)

We call a warped and filtered basis function �k(x) a resampling
kernel, which is expressed here as a screen space integral. Equa-
tion (2) states that we can first warp and filter each basis function
rk individually to construct the resampling kernels �k and then sum
up the contributions of these kernels in screen space. We call this
approach surface splatting, as illustrated in Figure 4. In contrast
to Heckbert, who transformed the screen space integral of Equa-
tion (2) to a source space integral and formulated a source space
resampling kernel, we proceed with (3) to derive a screen space
resampling kernel.

In order to simplify the integral for �k(x) in (3), we replace a
general mapping m(u) by its local affine approximation muk

at a
point uk ,

muk
(u) = xk + Juk � (u� uk), (4)

where xk =m(uk) and the Jacobian Juk = @m
@u

(uk).

screen space object space

resampling kernel ρk(x)

Pk

discrete output g(x)
mapping x=m(u)

m(uk)

Figure 4: Rendering by surface splatting, resampling kernels are
accumulated in screen space.

Heckbert relied on the same approximation in his derivation [6].
Since the basis functions rk have local support, muk

is used only
in a small neighborhood around uk in (3). Moreover, the approx-
imation is most accurate in the neighborhood of uk and so it does
not cause visual artifacts. We use it to rearrange Equation (3), and
after a few steps we find:

�k(x) =

Z
R2

h(x�muk
(uk)� �)r0k(�)d�

= (r0k 
 h)(x�muk
(uk)), (5)

where r0k(x) = rk(J
�1
uk
x) denotes a warped basis function. Thus,

although the texture function is defined on an irregular grid, Equa-
tion (5) states that the resampling kernel in screen space, �k(x),
can be written as a convolution of a warped basis function r0k and
the low-pass filter kernel h. This is essential for the derivation of
screen space EWA in the next section. Note that from now on we
are omitting the subscript uk for m and J.

3.3 Screen Space EWA
Like Greene and Heckbert [3], we choose elliptical Gaussians both
for the basis functions and the low-pass filter, since they are closed
under affine mappings and convolution. In the following derivation
we apply these mathematical properties to the results of the previ-
ous section. This enables us to express the resampling kernel as a
single Gaussian, facilitating efficient evaluation during rendering.

An elliptical Gaussian GV(x) with variance matrix V is defined
as:

GV(x) =
1

2�jVj
1

2

e�
1

2
x
T
V
�1
x,

where jVj is the determinant ofV.We denote the variance matrices
of the basis functions rk and the low-pass filter h with Vr

k and Vh,
respectively. The warped basis function and the low-pass filter are:

r0k(x) = r(J�1x) = GVr
k
(J�1x) =

1

jJ�1j
GJVr

k
JT (x)

h(x) = GVh (x):

The resampling kernel �k of (5) can be written as a single Gaussian
with a variance matrix that combines the warped basis function and
the low-pass filter. Typically Vh = I, yielding:

�k(x) = (r0k 
 h)(x�m(uk))

=
1

jJ�1j
(GJVr

k
JT 
 GI)(x�m(uk))

=
1

jJ�1j
GJVr

k
JT+I(x�m(uk)). (6)

We will show how to determine J�1 in Section 4, and how to com-
pute Vr

k in Section 5. Substituting the Gaussian resampling kernel



(6) into (2), the continuous output function is the weighted sum:

g0c(x) =
X
k2N

wk
1

jJ�1j
GJVr

k
JT+I(x�m(uk)). (7)

We call this novel formulation screen space EWA. Note that Equa-
tion (7) can easily be converted to Heckbert’s original formulation
of the EWA filter by transforming it to source space. Remember
that m denotes the local affine approximation (4), hence:

x�m(uk) =m(m�1(x)� uk) = J � (m�1(x)� uk).

Substituting this into (7) we get:

g0c(x) =
X
k2N

wkG
Vr
k
+J�1J�1

T (m
�1(x)� uk). (8)

Equation (8) states the well known source space EWA method
extended for irregular sample positions, which is mathematically
equivalent to our screen space formulation. However, (8) involves
backward mapping a point x from screen to the object surface,
which is impractical for interactive rendering. It amounts to ray
tracing the point cloud to find surface intersections. Additionally,
the locations uk are irregularly positioned such that the evaluation
of the resampling kernel in object space is laborious. On the other
hand, Equation (7) can be implemented efficiently for point-based
objects as described in the next section.

4 The Surface Splatting Algorithm
Intuitively, screen space EWA filtering (7) starts with projecting a
radially symmetric Gaussian basis function from the object surface
onto the image plane, resulting in an ellipse. The ellipse is then
convolved with a Gaussian low-pass filter yielding the resampling
filter, whose contributions are accumulated in screen space. Algo-
rithmically, surface splatting proceeds as follows:

for each point P[k] {
project P[k] to screen space;
determine the resampling kernel rho[k];
splat rho[k];

}
for each pixel x in the frame buffer {
shade x;

}

We describe these operations in detail:

Determining the resampling kernel The resampling kernel
�k(x) in Equation (6) is determined by the Jacobian J of the 2D
to 2D mapping that transforms coordinates of the local surface pa-
rameterization to viewport coordinates. This mapping consists of a
concatenation of an affine viewing transformation that maps the ob-
ject to camera space, a perspective projection to screen space, and
the viewport mapping to viewport coordinates.

Note that in the viewing transformation we do not allow non-
uniform scaling or shearing. This means we preserve the rotation
invariance of our basis functions in camera space. Hence, the Jaco-
bian of this transformation can be written as a uniform scaling ma-
trix with scaling factor smv . Similarly, since we restrict the view-
port mapping to translations and uniform scaling, we can describe
its Jacobian with a scaling factor svp.

To compute the Jacobian Jpr of the perspective projection, we
have to compute the local surface parameterization. After the view-
ing transformation, objects are given in camera coordinates that can
be projected simply by division by the z coordinate. The center of
projection is at the origin of camera space and the projection plane
is the plane z = 1. The following explanations are illustrated in
Figure 5. We construct a local parameterization of the object sur-

screen space (z=1)

x0

x1

x~0

x~1

u0

u1

nk

Pk

tangent plane at Pk, i.e.,
locally parameterized source space 

x

z
y

camera coordinates

Figure 5: Calculating the Jacobian J�1pr .

face around a point Pk by approximating the surface with its tan-
gent plane given by the normal nk (transformed to camera space)
at Pk. We define the parameterization by choosing two orthogo-
nal basis vectors u0 and u1 in the tangent plane. Since our basis
functions are radially symmetric, the orientation of these vectors is
arbitrary. Note that the tangent plane approximation leads to the
same inconsistencies of the local parameterizations as in conven-
tional rendering pipelines. There, the perspective mapping from
texture space to screen space is determined per triangle. However,
when the EWA kernel of a pixel near a triangle edge is warped to
texture space, it may overlap a region of the texture that is mapped
to several triangles, leading to slightly incorrect filtering of the tex-
ture. Yet, for both rendering methods, the error introduced is too
small to cause visual artifacts.

The mapping of coordinates of the local parameterization to
screen coordinates is given by the perspective projection of the tan-
gent plane to screen space. We find the Jacobian J�1pr of the inverse
mapping at the point Pk by projecting the basis vectors of screen
space x0 and x1 along the viewing ray that connects the center of
projection with Pk onto the tangent plane. This results in the vec-
tors ~x0 and ~x1. Specifically, we choose u0 = ~x0=k~x0k and con-
struct u1 such that u0;u1, and the normal nk form a right-handed
orthonormal coordinate system. This simplifies the Jacobian, since
~x0 � u1 = 0 and ~x0 � u0 = k~x0k, which is then given by:

J
�1
pr =

�
~x0 � u0 ~x1 � u0
~x0 � u1 ~x1 � u1

�
=

�
k~x0k ~x1 � u0
0 ~x1 � u1

�
,

where � denotes the vector dot product.
Concatenating the Jacobians of viewing transformation, projec-

tion, and viewport mapping, we finally get J:

J = svp � Jpr � smv .

Splatting the resampling kernel First, each point Pk is
mapped to the position m(uk) on screen. Then the resampling ker-
nel is centered at m(uk) and is evaluated for each pixel. In other
words, the contributions of all points are splatted into an accumu-
lation buffer. The projected normals of the points are filtered in
the same way. Besides color and normal components, each frame
buffer pixel contains the sum of the accumulated contributions of
the resampling kernels and camera space z values as well (see Ta-
ble 1).

Although the Gaussian resampling kernel has infinite support in
theory, in practice it is computed only for a limited range of the ex-

ponent �(x) = 1

2
xT (I + J�1J�1

T

)x. We choose a cutoff radius
c, such that �(x) < c. Bigger values for c increase image quality
but also the cost of splatting the kernel. A typical choice is c = 1,
providing good image quality at moderate splatting cost [6, 13].



Data Storage
RGBA color components 4� 4 Bytes
XYZ normal components 3� 4 Bytes

Accumulated contributions 4 Bytes
Camera space z value 4 Bytes

Material index 2 Bytes
Total per pixel: 38 Bytes

Table 1: Data storage per frame buffer pixel.

Because the resampling kernels are truncated to a finite support, an
additional normalization by the sum of the accumulated contribu-
tions is required, yielding the final pixel value:

g(x) =
X
k2N

wk
�k(x)P
j2N�j(x)

. (9)

Since the pixel grid in screen space is regular, the kernel can be eval-
uated efficiently by forward differencing in a rectangular bounding
box and using lookup tables.

In general, the depth complexity of a scene is greater than one,
thus a mechanism is required that separates the contributions of dif-
ferent surfaces when they are splatted into the frame buffer. Conse-
quently, the z value of the tangent plane at Pk is computed at each
pixel that is covered by the kernel, which can be done by forward
differencing as well. This is similar to the visibility splatting ap-
proach of [15]. To determine whether a new contribution belongs
to the same surface as is already stored in a pixel, the difference be-
tween the new z value and the z value stored in the frame buffer is
compared to a threshold. If the difference is smaller than the thresh-
old, the contribution is added to the pixel. Otherwise, given that it
is closer to the eye-point, the data of the frame buffer is replaced by
the new contribution.

Deferred shading The frame buffer is shaded after all points
of a scene have been splatted. This avoids shading invisible points.
Instead, each pixel is shaded using the filtered normal. Parameters
for the shader are accessed via an index to a table with material
properties (see Table 1). Advanced pixel shading methods, such as
reflection mapping, can be easily implemented as well.

5 Texture Acquisition
In this section we address the problem of pre-computing the texture
coefficients wk and the basis functions rk of the continuous texture
function in (1).

Determining the basis functions As in Section 3.2, the basis
functions rk are Gaussians with variance matrices Vr

k. For each
point Pk , this matrix has to be chosen appropriately in order to
match the local density of points around Pk. In some applications,
we can assume that the sampling pattern in the local planar area
around uk is a jittered grid with sidelength h in object space. Then
a simple solution to choose Vr

k is:

V
r
k =

�
1

h2
0

0 1

h2

�
,

which scales the Gaussian by h. For example in the Surfel sys-
tem [15], h is globally given by the object acquisition process that
samples the positions uk. Another possibility is to choose h as the
maximum distance between points in a small neighborhood. This
value can be pre-computed and stored in a hierarchical data struc-
ture as in [16].

Computing the coefficients We distinguish between two dif-
ferent settings when computing the coefficients wk:

1. Objects with per point color. The object acquisition method
provides points with per point color samples.

2. Texture mapping point-based objects. Image or procedural
textures from external sources are applied to a given point-
sampled geometry.

Objects with per point color Many of today’s imaging sys-
tems, such as laser range scanners or passive vision systems [12],
acquire range and color information. In such cases, the acquisition
process provides a color sample ck with each point. We have to
compute a continuous approximation fc(u) of the unknown origi-
nal texture function from the irregular set of samples ck .

A computationally reasonable approximation is to normalize the
basis functions rk to form a partition of unity, i.e., to sum up to
one everywhere. Then we use the samples as coefficients, hence
wk = ck , and build a weighted sum of the samples ck:

fc(u) =
X
k2N

ck r̂k(u� uk) =
X
k2N

ck
rk(u� uk)P
j2Nrj(u� uj)

,

where r̂k are the normalized basis functions. However, these are ra-
tional functions, invalidating the derivation of the resampling kernel
in Section 3.2. Instead, we normalize the resampling kernels, which
are warped and band-limited basis functions. This normalization
does not require additional computations, since it is performed dur-
ing rendering, as described in Equation (9).

Texture mapping of point-based objects When an im-
age or procedural texture is explicitly applied to point-sampled ge-
ometry, a mapping function from texture space to object space has
to be available at pre-processing time. This allows us to warp the
continuous texture function from texture space with coordinates s
to object space with coordinates u. We determine the unknown co-
efficients wk of fc(u) such that fc(u) optimally approximates the
texture.

From the samples ci and the sampling locations si of the tex-
ture, the continuous texture function cc(s) is reconstructed using
the reconstruction kernel n(s), yielding:

cc(s) =
X
i

cin(s� si) =
X
i

cini(s).

In our system, the reconstruction kernel is a Gaussian with unit vari-
ance, which is a common choice for regular textures. Applying the
mapping u = t(s) from texture space to object space, the warped
texture function ~fc(u) is given by:

~fc(u) = cc(t
�1(u)) =

X
i

cini(t
�1(u)).

With ~fc(u) in place, our goal is to determine the coefficients wk

such that the error of the approximation provided by fc(u) is min-
imal. Utilizing the L2 norm, the problem is minimizing the follow-
ing functional:

F (w) = k ~fc(u)� fc(u)k
2
L2

= k
P

i cini(t
�1(u))�

P
k wkrk(u� uk)k

2
L2

, (10)

wherew = (wj) denotes the vector of unknown coefficients. Since
F (w) is a quadratic function of the coefficients, it takes its mini-
mum atrF (w) = 0, yielding a set of linear equations. After some
algebraic manipulations, detailed in Appendix A, we find the linear



system Rw = c. The elements of the matrix R and the vector c
are given by the inner products:

(R)kj =< rk; rj > and

(c)k =
X
i

cihrk; ni Æ t
�1i. (11)

We compare this optimization method with a view-independent
EWA approach, similar as proposed in [4, 15]. Our novel tech-
nique is a generalization of view-independent EWA, which can be
derived from (11) by means of the simplifying assumption that the
basis functions rk are orthonormal. In this case, the inner prod-
ucts are given by hrk; rji = Ækj , where Ækj = 1 if k = j and
Ækj = 0 otherwise. Consequently, R is the identity matrix and the
coefficients are determined as in EWA filtering by:

wk =
X
i

cihrk; ni Æ t
�1i.

In Figure 6, we show a checkerboard texture that was sampled to
an irregular set of points. On the left, we applied our optimized tex-
ture sampling technique. On the right, we used view-independent
EWA. In the first row, the textures are rendered under minification,
which does not reveal the difference between the continuous tex-
ture functions, since the filter used for rendering is dominated by
the band-limiting step. In the second row, however, magnifica-
tion clearly illustrates that optimized texture sampling produces a
much sharper approximation of the original texture. In the third
row, we use extreme magnification to visualize the irregular pattern
of points, depicted in the middle.

Optimized sampling View-indep. EWA sampling

minification

magnification

Figure 6: Left: optimized texture sampling. Right: view-
independent EWA. Bottom middle: Irregular grid of points in the
area shown on the left and right.

6 Transparency
The basic algorithm described in Section 4 can be easily extended to
handle transparent surfaces as well. Our approach provides order-
independent transparency using a single rendering pass and a fixed
amount of frame buffer memory.

The general idea is to use a frame buffer that consists of several
layers, each containing the data listed in Table 1. A layer stores a
fragment at each pixel. The purpose of a fragment is to collect the
contributions of a single surface to the pixel. After all points have
been splatted, the fragments are blended back-to-front to produce
the final pixel color.

We adopt the strategy presented in [8], which avoids the disad-
vantages of both multi-pass (e.g., [20]) and basic A-buffer (e.g., [1])
algorithms. Providing a small fixed number l of fragments per
pixel, fragments are merged whenever the number of fragments ex-
ceeds the preset limit l. We apply the same rendering procedure as
described in Section 4, where the splatting is extended as follows:

Splatting the resampling kernel In contrast to the single lay-
ered frame buffer of Section 4, the frame buffer now contains sev-
eral layers, each storing a fragment per pixel. Each contribution
that is splatted into a pixel is processed in three steps:

1. Accumulate-or-Separate Decision. Using a z threshold as de-
scribed in Section 4, all fragments of the pixel are checked to
see if they contain data of the same surface as the new con-
tribution. If this is the case, the contribution is added to the
fragment and we are done. Otherwise, the new contribution
is treated as a separate surface and a temporary fragment is
initialized with its data.

2. New Fragment Insertion. If the number of fragments includ-
ing the temporary fragment is smaller than the limit l, the tem-
porary fragment is copied into a free slot in the frame buffer
and we are done.

3. Fragment Merging. If the above is not true, then two frag-
ments have to be merged. Before merging, the fragments have
to be shaded.

When fragments are merged, some information is inevitably lost
and visual artifacts may occur. These effects are minimized by us-
ing an appropriate merging strategy. Unfortunately, the situation is
complicated by the fact that a decision has to be taken as the scene
is being rendered, without knowledge about subsequent rendering
operations. The main criterion for merging fragments is the dif-
ference between their z values. This reduces the chance that there
are other surfaces, which are going to be rendered later, that lie be-
tween the two merged surfaces. In this case, incorrect back-to-front
blending may introduce visual artifacts.

Before fragments can be merged, their final color has to be deter-
mined by shading them. Shaded fragments are indicated by setting
their accumulated weight (see Table 1) to a negative value to guar-
antee that they are shaded exactly once. The color and alpha values
of the front and back fragment to be merged are cf ; �f and cb; �b,
respectively. The color and alpha values co; �o of the merged frag-
ment are computed using:

co = cf�f + cb�b (1� �f )

�o = �f + �b (1 � �f ) . (12)

Similar to Section 4, fragments are shaded if necessary in a second
pass. After shading, the fragments of each pixel are blended back-
to-front as described in Equation (12) to produce the final pixel
color.

Figure 7 shows a geometric object consisting of semi-
transparent, intersecting surfaces, rendered with the extended sur-
face splatting algorithm. In most areas, the surfaces are blended
flawlessly back-to-front. The geometry of the surfaces, however,
is not reconstructed properly around the intersection lines, as illus-
trated in the close-up on the right. In these regions, contributions of
different surfaces are mixed in the fragments, which can cause vi-
sual artifacts. On the other hand, in areas of high surface curvature
the local tangent plane approximation poorly matches the actual
surface. Hence, it may happen that not all contributions of a surface
are collected in a single fragment, leading to similar artifacts. Es-
sentially, both cases arise because of geometry undersampling. We
can avoid the problem by increasing the geometry sampling rate or
by using a higher order approximation of the surface. However, the
latter is impracticable to compute for interactive rendering.

7 Edge Antialiasing
In order to perform edge antialiasing, information about partial cov-
erage of surfaces in fragments is needed. For point-based represen-
tations, one way to approximate coverage is to estimate the density



Figure 7: Geometric object with intersecting, semi-transparent sur-
faces, rendered with the extended surface splatting algorithm and
edge-antialiasing.

of projected points per pixel area [10]. Coverage is then computed
by measuring the actual density of points in a fragment and dividing
the measured value by the estimated value.

Rather than explicitly calculating this estimation, we make the
simplifying assumption that the Gaussian basis functions are lo-
cated on a regular grid and have unit variance. In this case, they
approximate a partition of unity. In other words, we assume that
they sum up to one at any point. Warping and band-limiting this
constant function results in a constant function again. Therefore
the sum q of the resampling kernels is approximately one at any
point, specifically in all fragments x:

q =
X
k2N

�k(x) � 1.

If q is smaller than one in a fragment, this indicates that the texture
does not completely cover the pixel and q can be used as a coverage
coefficient.

For an irregular grid, the approximation of the partition of unity
becomes less reliable. Furthermore, the Gaussians are truncated
to a finite support. With a cutoff radius c = 1 (see Section 4), we
found that a threshold � = 0:4 for indicating full coverage produces
good results in general. The coverage q0 of a pixel is q0 = q=� . We
implement edge antialiasing by multiplying the alpha value of a
fragment with its coverage coefficient. The final alpha value �0 of
the fragment is:

�0 =

�
� if q0 � 1
� � q0 if q0 < 1.

8 Results
We implemented a point-sample rendering pipeline based on sur-
face splatting in software. Furthermore, we can convert geometric
models into point-based objects in a pre-processing step. Our sam-
pler generates a hierarchical data structure similar to [15], facili-
tating multiresolution and progressive rendering. It applies view-
independent EWA texture filtering to sample image textures onto
point objects. We implemented the optimized texture sampling
technique discussed in Section 5 in Matlab.

Figure 1, left, shows a face that was rendered using a point cloud
acquired by a laser range scanner. Figure 1, middle and right, show
point-sampled geometric objects. We illustrate high quality textur-
ing on terrain data and semi-transparent surfaces on the complex
model of a helicopter.

Table 2 shows the performance of our unoptimized C implemen-
tation of surface splatting. The frame rates were measured on a 1.1
GHz AMD Athlon system with 1.5 GByte memory. We rendered to
a frame buffer with three layers and a resolution of 256 � 256 and

512 � 512 pixels, respectively. A pixel needs 3� 38 = 114 bytes
of storage. The entire frame buffer requires 6.375 MB and 25.5 MB
of memory, respectively.

Data # Points 256 � 256 512 � 512
Scanned Head 429075 1.3 fps 0.7 fps
Matterhorn 4782011 0.2 fps 0.1 fps
Helicopter 987552 0.6 fps 0.3 fps

Table 2: Rendering performance for frame buffer resolutions 256
� 256 and 512 � 512.

The texture quality of the surface splatting algorithm is equiva-
lent to conventional source space EWA texture quality. Figure 8,
top and second row, compare screen space EWA and source space
EWA on a high frequency texture with regular sampling pattern.
Note that screen space EWA is rendered with edge antialiasing and
there was no hierarchical data structure used. Moreover, the third
row illustrates splatting with circular Gaussians, similar to the tech-
niques of Levoy [10] and Shade [17]. We use the major axis of the
screen space EWA ellipse as the radius for the circular splats, which
corresponds to the choices of [10] and [17]. This leads to overly
blurred images in areas where the texture is magnified. In case of

Figure 8: Top row: screen space EWA. Second row: source space
EWA. Third row: circular splats. Bottom: elliptical splats.

minification, the circular splats approximate the screen space EWA
ellipses more closely, leading to better filtering. The bottom row
shows splatting with elliptical Gaussians that are determined us-
ing the normal direction of the surface as discussed in [16]. This



amounts to omitting the band-limiting step of EWA, which causes
aliasing artifacts in regions where the texture is minified. In magni-
fied areas, the elliptical splats result in nice anisotropic filtering. In
contrast to these methods, screen space EWA provides a continuous
transition between minification and magnification and renders high
quality textures in both cases.

9 Conclusions
Surface splatting is a new algorithm that makes the benefits of EWA
texture filtering accessible to point-based surface representations
and rendering techniques. We have provided a through mathemat-
ical analysis of the process of constructing a continuous textured
image from irregular points. We have also developed an optimized
texture sampling technique to sample image or procedural textures
onto point-based objects. Surface splatting provides stable textures
with no flickering during animations. A modified A-buffer and sim-
ple merging strategy provides transparency and edge-antialiasing
with a minimum of visual artifacts.

We will apply surface splatting to procedurally generated ob-
jects, such as parametric surfaces or fractal terrain. Rendering the
generated points in the order of computation should yield high per-
formance. We think it is possible to extend surface splatting to ren-
der volumetric objects, such as clouds, fire, and medical CT scans.
This will require extending the screen space EWA framework to
3D spherical kernels. By rendering voxels in approximate front-to-
back order we could use our modified A-buffer without undue in-
crease of the number of fragments to be merged per pixel. Because
of the simplicity of the surface splatting algorithm we are investi-
gating an efficient hardware implementation. Increasing processor
performance and real-time hardware will expand the utility of this
high quality point-rendering method.
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Appendix A: Mathematical Framework
The L2 Norm of equation (10) can be computed using inner products hf; fi:

kfk2L2 = hf; fi =

Z
f(x)f(x)dx,

and exploiting the linearity of the operator we obtain:
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We minimize F (w) by computing the roots of the gradient, i.e.:
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This set of linear equations can be written in matrix form:0
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Surfels: Surface Elements as Rendering Primitives
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Figure 1: Surfel rendering examples.

Abstract
Surface elements (surfels) are a powerful paradigm to efficiently
render complex geometric objects at interactive frame rates. Un-
like classical surface discretizations, i.e., triangles or quadrilateral
meshes, surfels are point primitives without explicit connectivity.
Surfel attributes comprise depth, texture color, normal, and oth-
ers. As a pre-process, an octree-based surfel representation of a
geometric object is computed. During sampling, surfel positions
and normals are optionally perturbed, and different levels of texture
colors are prefiltered and stored per surfel. During rendering, a hi-
erarchical forward warping algorithm projects surfels to a z-buffer.
A novel method called visibility splatting determines visible sur-
fels and holes in the z-buffer. Visible surfels are shaded using tex-
ture filtering, Phong illumination, and environment mapping using
per-surfel normals. Several methods of image reconstruction, in-
cluding supersampling, offer flexible speed-quality tradeoffs. Due
to the simplicity of the operations, the surfel rendering pipeline is
amenable for hardware implementation. Surfel objects offer com-
plex shape, low rendering cost and high image quality, which makes
them specifically suited for low-cost, real-time graphics, such as
games.
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yETH Zürich, Switzerland. Email: [zwicker,gross]@inf.ethz.ch

1 Introduction
3D computer graphics has finally become ubiquitous at the con-
sumer level. There is a proliferation of affordable 3D graphics hard-
ware accelerators, from high-end PC workstations to low-priced
gamestations. Undoubtedly, key to this success is interactive com-
puter games that have emerged as the “killer application” for 3D
graphics. However, interactive computer graphics has still not
reached the level of realism that allows a true immersion into a
virtual world. For example, typical foreground characters in real-
time games are extremely minimalistic polygon models that often
exhibit faceting artifacts, such as angular silhouettes.

Various sophisticated modeling techniques, such as implicit sur-
faces, NURBS, or subdivision surfaces, allow the creation of 3D
graphics models with increasingly complex shapes. Higher order
modeling primitives, however, are eventually decomposed into tri-
angles before being rendered by the graphics subsystem. The trian-
gle as a rendering primitive seems to meet the right balance between
descriptive power and computational burden [7]. To render realis-
tic, organic-looking models requires highly complex shapes with
ever more triangles, or, as Alvy Ray Smith puts it: “Reality is 80
million polygons” [26]. Processing many small triangles leads to
bandwidth bottlenecks and excessive floating point and rasteriza-
tion requirements [7].

To increase the apparent visual complexity of objects, texture
mapping was introduced by Catmull [3] and successfully applied by
others [13]. Textures convey more detail inside a polygon, thereby
allowing larger and fewer triangles to be used. Today’s graphics
engines are highly tailored for high texture mapping performance.
However, texture maps have to follow the underlying geometry of
the polygon model and work best on flat or slightly curved surfaces.
Realistic surfaces frequently require a large number of textures that
have to be applied in multiple passes during rasterization. And phe-
nomena such as smoke, fire, or water are difficult to render using
textured triangles.

In this paper we propose a new method of rendering objects with
rich shapes and textures at interactive frame rates. Our rendering
architecture is based on simple surface elements (surfels) as ren-
dering primitives. Surfels are point samples of a graphics model. In
a preprocessing step, we sample the surfaces of complex geometric
models along three orthographic views. At the same time, we per-
form computation-intensive calculations such as texture, bump, or
displacement mapping. By moving rasterization and texturing from
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Figure 2: Algorithm overview: a) Preprocessing. b) Rendering of the hierarchical LDC tree.

the core rendering pipeline to the preprocessing step, we dramati-
cally reduce the rendering cost.

From a modeling point of view, the surfel representation pro-
vides a mere discretization of the geometry and hence reduces the
object representation to the essentials needed for rendering. By
contrast, triangle primitives implicitly store connectivity informa-
tion, such as vertex valence or adjacency – data not necessarily
available or needed for rendering. In a sense, a surfel relates to
what Levoy and Whitted call the lingua franca of rendering in their
pioneering report from 1985 [18].

Storing normals, prefiltered textures, and other per surfel data
enables us to build high quality rendering algorithms. Shading
and transformations applied per surfel result in Phong illumination,
bump, and displacement mapping, as well as other advanced ren-
dering features. Our data structure provides a multiresolution ob-
ject representation, and a hierarchical forward warping algorithm
allows us to estimate the surfel density in the output image for
speed-quality tradeoffs.

The surfel rendering pipeline complements the existing graphics
pipeline and does not intend to replace it. It is positioned between
conventional geometry-based approaches and image-based render-
ing and trades memory overhead for rendering performance and
quality. The focus of this work has been interactive 3D applications,
not high-end applications such as feature films or CAD/CAM. Sur-
fels are not well suited to represent flat surfaces, such as walls or
scene backgrounds, where large, textured polygons provide better
image quality at lower rendering cost. However, surfels work well
for models with rich, organic shapes or high surface details and for
applications where preprocessing is not an issue. These qualities
make them ideal for interactive games.

2 Related Work
The use of points as rendering primitives has a long history in com-
puter graphics. As far back as 1974, Catmull [3] observed that ge-
ometric subdivision may ultimately lead to points. Particles were
subsequently used for objects that could not be rendered with ge-
ometry, such as clouds, explosions, and fire [23]. More recently,
image-based rendering has become popular because its rendering
time is proportional to the number of pixels in the source and out-
put images and not the scene complexity.

Visually complex objects have been represented by dynamically
generated image sprites [25], which are quick to draw and largely
retain the visual characteristics of the object. A similar approach
was used in the Talisman rendering system [27] to maintain high
and approximately constant frame rates. However, mapping objects
onto planar polygons leads to visibility errors and does not allow for
parallax and disocclusion effects. To address these problems, sev-
eral methods add per-pixel depth information to images, variously
called layered impostors [24], sprites with depth, or layered depth
images [25], just to name a few. Still, none of these techniques pro-
vide a complete object model that can be illuminated and rendered
from arbitrary points of view.

Some image-based approaches represent objects without explic-
itly storing any geometry or depth. Methods such as view inter-
polation and Quicktime VR [5] or plenoptic modeling [21] cre-
ate new views from a collection of 2D images. Lightfield [17] or
lumigraph [9] techniques describe the radiance of a scene or ob-
ject as a function of position and direction in a four- or higher-

dimensional space, but at the price of considerable storage over-
head. All these methods use view-dependent samples to represent
an object or scene. However, view-dependent samples are ineffec-
tive for dynamic scenes with motion of objects, changes in material
properties, and changes in position and intensities of light sources.

The main idea of representing objects with surfels is to describe
them in a view-independent, object-centered rather than image-
centered fashion. As such, surfel rendering is positioned between
geometry rendering and image-based rendering. In volume graph-
ics [16], synthetic objects are implicitly represented with surface
voxels, typically stored on a regular grid. However, the extra third
dimension of volumes comes at the price of higher storage require-
ments and longer rendering times. In [8], Perlin studies “surflets,”
a flavor of wavelets that can be used to describe free-form implicit
surfaces. Surflets have less storage overhead than volumes, but ren-
dering them requires lengthy ray casting.

Our research was inspired by the following work: Animatek’s
Caviar player [1] provides interactive frame rates for surface voxel
models on a Pentium class PC, but uses simplistic projection and
illumination methods. Levoy and Whitted [18] use points to model
objects for the special case of continuous, differentiable surfaces.
They address the problem of texture filtering in detail. Max uses
point samples obtained from orthographic views to model and ren-
der trees [20]. Dally et al. [6] introduced the delta tree as an object-
centered approach to image-based rendering. The movement of the
viewpoint in their method, however, is still confined to particular
locations. More recently, Grossman and Dally [12] describe a point
sample representation for fast rendering of complex objects. Chang
et al. [4] presented the LDI tree, a hierarchical space-partitioning
data structure for image-based rendering.

We extend and integrate these ideas and present a complete point
sample rendering system comprising an efficient hierarchical repre-
sentation, high quality texture filtering, accurate visibility calcula-
tions, and image reconstruction with flexible speed-quality trade-
offs. Our surfel rendering pipeline provides high quality rendering
of exceedingly complex models and is amenable for hardware im-
plementation.

3 Conceptual Overview
Similar to the method proposed by Levoy and Whitted [18], our
surfel approach consists of two main steps: sampling and surfel
rendering. Sampling of geometry and texture is done during prepro-
cessing, which may include other view-independent methods such
as bump and displacement mapping. Figure 2 gives a conceptual
overview of the algorithm.

The sampling process (Section 5) converts geometric objects and
their textures to surfels. We use ray casting to create three orthog-
onal layered depth images (LDIs) [25]. The LDIs store multiple
surfels along each ray, one for each ray-surface intersection point.
Lischinski and Rappaport [19] call this arrangement of three or-
thogonal LDIs a layered depth cube (LDC). An important and novel
aspect of our sampling method is the distinction between sampling
of shape, or geometry, and shade, or texture color. A surfel stores
both shape, such as surface position and orientation, and shade,
such as multiple levels of prefiltered texture colors. Because of the
similarities to traditional texture mipmaps we call this hierarchical
color information a surfel mipmap.



From the LDC we create an efficient hierarchical data structure
for rendering. Chang et al.[4] introduce the LDI tree, an octree with
an LDI attached to each octree node. We use the same hierarchical
space-partitioning structure, but store an LDC at each node of the
octree (Section 6). Each LDC node in the octree is called a block.
We call the resulting data structure the LDC tree. In a step called
3-to-1 reduction we optionally reduce the LDCs to single LDIs on
a block-by-block basis for faster rendering.

The rendering pipeline (Section 7) hierarchically projects blocks
to screen space using perspective projection. The rendering is ac-
celerated by block culling [12] and fast incremental forward warp-
ing. We estimate the projected surfel density in the output image to
control rendering speed and quality of the image reconstruction. A
conventional z-buffer together with a novel method called visibil-
ity splatting solves the visibility problem. Texture colors of visible
surfels are filtered using linear interpolation between appropriate
levels of the surfel mipmap. Each visible surfel is shaded using,
for example, Phong illumination and reflection mapping. The final
stage performs image reconstruction from visible surfels, including
hole filling and antialiasing. In general, the resolution of the output
image and the resolution of the z-buffer do not have to be the same.

4 Definition of a Surfel
We found the term surfel as an abbreviation for surface element
or surface voxel in the volume rendering and discrete topology
literature. Herman [15] defines a surfel as an oriented (n � 1)-
dimensional object in R

n. For n = 3, this corresponds to an ori-
ented unit square (voxel face) and is consistent with thinking of
voxels as little cubes. However, for our discussion we find it more
useful to define surfels as follows:

A surfel is a zero-dimensional n-tuple with shape and shade at-
tributes that locally approximate an object surface.

We consider the alternative term, point sample, to be too general,
since voxels and pixels are point samples as well.

5 Sampling
The goal during sampling is to find an optimal surfel representa-
tion of the geometry with minimum redundancy. Most sampling
methods perform object discretization as a function of geometric
parameters of the surface, such as curvature or silhouettes. This
object space discretization typically leads to too many or too few
primitives for rendering. In a surfel representation, object sampling
is aligned to image space and matches the expected output resolu-
tion of the image.

5.1 LDC Sampling
We sample geometric models from three sides of a cube into three
orthogonal LDIs, called a layered depth cube (LDC) [19] or block.
Figure 3 shows an LDC and two LDIs using a 2D drawing. Ray

LDI 1 surfels
LDI 2 surfels

LDI 1

LD
I 2

Figure 3: Layered depth cube sampling (shown in 2D).

casting records all intersections, including intersections with back-
facing surfaces. At each intersection point, a surfel is created with
floating point depth and other shape and shade properties. Perturba-
tion of the surface normal or of the geometry for bump and displace-
ment mapping can be performed on the geometry before sampling
or during ray casting using procedural shaders.

Alternatively, we could sample an object from predetermined di-
rections on a surrounding convex hull using orthographic depth im-
ages [6, 12]. However, combining multiple reference images and
eliminating the redundant information is a difficult problem [21],
and sampling geometry with reference images works best for
smooth and convex objects. In addition, LDC sampling allows us to
easily build a hierarchical data structure, which would be difficult
to do from dozens of depth images.

5.2 Adequate Sampling Resolution
Given a pixel spacing of h0 for the full resolution LDC used for
sampling, we can determine the resulting sampling density on the
surface. Suppose we construct a Delaunay triangulation on the ob-
ject surface using the generated surfels as triangle vertices. As was
observed in [19], the imaginary triangle mesh generated by this
sampling process has a maximum sidelength smax of

p
3h0. The

minimum sidelength smin is 0 when two or three sampling rays
intersect at the same surface position.

Similarly to [12], we call the object adequately sampled if we
can guarantee that at least one surfel is projected into the support
of each ouptut pixel filter for orthographic projection and unit mag-
nification. That condition is met if smax, the maximum distance
between adjacent surfels in object space, is less than the radius r0rec
of the desired pixel reconstruction filter. Typically, we choose the
LDI resolution to be slightly higher than this because of the effects
of magnification and perspective projection. We will revisit these
observations when estimating the number of projected surfels per
pixel in Section 7.2.

5.3 Texture Prefiltering
A feature of surfel rendering is that textures are prefiltered and
mapped to object space during preprocessing. We use view-
independent texture filtering as in [12]. To prevent view-dependent
texture aliasing we also apply per-surfel texture filtering during ren-
dering (see Sections 7.4 and 7.6).

To determine the extent of the filter footprint in texture space,
we center a circle at each surfel on its tangent plane, as shown in
Figure 4a. We call these circles tangent disks. The tangent disks are

rpre

b)a)

Texture SpaceObject Space

0

Figure 4: Texture prefiltering with tangent disks.

mapped to ellipses in texture space (see Figure 4b) using the pre-
defined texture parameterization of the surface. An EWA filter [14]
is applied to filter the texture and the resulting color is assigned to
the surfel. To enable adequate texture reconstruction, the elliptical
filter footprints in texture space must overlap each other. Conse-
quently, we choose r

0
pre = smax, the maximum distance between

adjacent surfels in object space, as the radius for the tangent disks.
This usually guarantees that the tangent disks intersect each other
in object space and that their projections in texture space overlap.



Grossman and Dally [12] also use view-independent texture fil-
tering and store one texture sample per surfel. Since we use a mod-
ified z-buffer algorithm to resolve visibility (Section 7.3), not all
surfels may be available for image reconstruction, which leads to
texture aliasing artifacts. Consequently, we store several (typically
three or four) prefiltered texture samples per surfel. Tangent disks
with dyadically larger radii rkpre = smax2

k are mapped to texture
space and used to compute the prefiltered colors. Because of its
similarity to mipmapping [13], we call this a surfel mipmap. Fig-
ure 4b shows the elliptical footprints in texture space of consecu-
tively larger tangent disks.

6 Data Structure
We use the LDC tree, an efficient hierarchical data structure, to
store the LDCs acquired during sampling. It allows us to quickly
estimate the number of projected surfels per pixel and to trade ren-
dering speed for higher image quality.

6.1 The LDC Tree
Chang et al. [4] use several reference depth images of a scene to
construct the LDI tree. The depth image pixels are resampled onto
multiple LDI tree nodes using splatting [29]. We avoid these inter-
polation steps by storing LDCs at each node in the octree that are
subsampled versions of the highest resolution LDC.

The octree is recursively constructed bottom up, and its height is
selected by the user. The highest resolution LDC — acquired dur-
ing geometry sampling — is stored at the lowest level n = 0. If the
highest resolution LDC has a pixel spacing of h0, then the LDC at
level n has a pixel spacing of hn = h02

n. The LDC is subdivided
into blocks with user-specified dimension b, i.e., the LDIs in a block
have b2 layered depth pixels. b is the same for all levels of the tree.
Figure 5a shows two levels of an LDC tree with b = 4 using a 2D
drawing. In the figure, neighboring blocks are differently shaded,

b)a)

Figure 5: Two levels of the LDC tree (shown in 2D).

and empty blocks are white. Blocks on higher levels of the octree
are constructed by subsampling their children by a factor of two.
Figure 5b shows level n = 1 of the LDC tree. Note that surfels at
higher levels of the octree reference surfels in the LDC of level 0,
i.e., surfels that appear in several blocks of the hierarchy are stored
only once and shared between blocks.

Empty blocks (shown as white squares in the figure) are not
stored. Consequently, the block dimension b is not related to the
dimension of the highest resolution LDC and can be selected ar-
bitrarily. Choosing b = 1 makes the LDC tree a fully volumetric
octree representation. For a comparison between LDCs and vol-
umes see [19].

6.2 3-to-1 Reduction
To reduce storage and rendering time it is often useful to optionally
reduce the LDCs to one LDI on a block-by-block basis. Because
this typically corresponds to a three-fold increase in warping speed,
we call this step 3-to-1 reduction. First, surfels are resampled to
integer grid locations of ray intersections as shown in Figure 6.
Currently we use nearest neighbor interpolation, although a more

resampled surfels
on grid locations

LDI 1 surfels
LDI 2 surfels

Figure 6: 3-to-1 reduction example.

sophisticated filter, e.g., splatting as in [4], could easily be imple-
mented. The resampled surfels of the block are then stored in a
single LDI.

The reduction and resampling process degrades the quality of
the surfel representation, both for shape and for shade. Resampled
surfels from the same surface may have very different texture col-
ors and normals. This may cause color and shading artifacts that
are worsened during object motion. In practice, however, we did
not encounter severe artifacts due to 3-to-1 reduction. Because our
rendering pipeline handles LDCs and LDIs the same way, we could
store blocks with thin structures as LDCs, while all other blocks
could be reduced to single LDIs.

As in Section 5.2, we can determine bounds on the surfel density
on the surface after 3-to-1 reduction. Given a sampling LDI with
pixel spacing h0, the maximum distance between adjacent surfels
on the object surface is smax =

p
3h0, as in the original LDC tree.

The minimum distance between surfels increases to smin = h0

due to the elimination of redundant surfels, making the imaginary
Delaunay triangulation on the surface more uniform.

7 The Rendering Pipeline
The rendering pipeline takes the surfel LDC tree and renders it us-
ing hierarchical visibility culling and forward warping of blocks.
Hierarchical rendering also allows us to estimate the number of pro-
jected surfels per output pixel. For maximum rendering efficiency,
we project approximately one surfel per pixel and use the same res-
olution for the z-buffer as in the output image. For maximum image
quality, we project multiple surfels per pixel, use a finer resolution
of the z-buffer, and high quality image reconstruction.

7.1 Block Culling
We traverse the LDC tree from top (the lowest resolution blocks)
to bottom (the highest resolution blocks). For each block, we first
perform view-frustum culling using the block bounding box. Next,
we use visibility cones, as described in [11], to perform the equiv-
alent of backface culling of blocks. Using the surfel normals, we
precompute a visibility cone per block, which gives a fast, con-
servative visibility test: no surfel in the block is visible from any
viewpoint within the cone. In contrast to [11], we perform all visi-
bility tests hierarchically in the LDC tree, which makes them more
efficient.

7.2 Block Warping
During rendering, the LDC tree is traversed top to bottom [4]. To
choose the octree level to be projected, we conservatively estimate
for each block the number of surfels per pixel. We can choose one
surfel per pixel for fast rendering or multiple surfels per pixel for
supersampling. For each block at tree level n, the number of sur-
fels per pixel is determined by i

n

max, the maximum distance be-
tween adjacent surfels in image space. We estimate inmax by divid-
ing the maximum length of the projected four major diagonals of
the block bounding box by the block dimension b. This is correct
for orthographic projection. However, the error introduced by using
perspective projection is small because a block typically projects to
a small number of pixels.

For each block, inmax is compared to the radius r0rec of the de-
sired pixel reconstruction filter. r

0
rec is typically

p
2

2
so, where so



is the sidelength of an output pixel. If inmax of the current block
is larger than r

0
rec then its children are traversed. We project the

block whose i
n

max is smaller than r
0
rec, rendering approximately

one surfel per pixel. Note that the number of surfels per pixel can
be increased by requiring that inmax is a fraction of r0rec. The result-
ing inmax is stored as imax with each projected surfel for subsequent
use in the visibility testing and the image reconstruction stages. The
radius of the actual reconstruction filter is rrec = max(r0rec; imax)
(see Section 7.6).

To warp a block to screen space we use the optimized incre-
mental block warping by Grossman and Dally, presented in detail
in [11]. Its high efficiency is achieved due to the regularity of LDCs.
It uses only 6 additions, 3 multiplications, and 1 reciprocal per sam-
ple. The LDIs in each LDC block are warped independently, which
allows us to render an LDC tree where some or all blocks have been
reduced to single LDIs after 3-to-1 reduction.

7.3 Visibility Testing
Perspective projection, high z-buffer resolution, and magnification
may lead to undersampling or holes in the z-buffer. A z-buffer pixel
is a hole if it does not contain a visible surfel or background pixel
after projection. Holes have to be marked for image reconstruction.
Each pixel of the z-buffer stores a pointer to the closest surfel and
the current minimum depth. Surfel depths are projected to the z-
buffer using nearest neighbor interpolation.

To correctly resolve visibility in light of holes, we scan-convert
the orthographic projection of the surfel tangent disks into the z-
buffer. The tangent disks have a radius of rnt = smax2

n, where
smax is the maximum distance between adjacent surfels in object
space and n is the level of the block. We call this approach visibility
splatting, shown in Figure 7. Visibility splatting effectively sepa-
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Figure 7: Visibility splatting.

rates visibility calculations and reconstruction of the image, which
produces high quality images and is amenable to hardware imple-
mentation [22].

After orthographic projection, the tangent disks form an ellipse
around the surfel, as shown in Figure 7b. We approximate the el-
lipse with a partially axis-aligned bounding box, shown in red. The
bounding box parallelogram can be easily scan-converted, and each
z-buffer pixel is filled with the appropriate depth (indicated by the
shaded squares in the figure), depending on the surfel normal N .
This scan conversion requires only simple setup calculations, no
interpolation of colors, and no perspective divide.

The direction of the minor axis amin of the projected ellipse is
parallel to the projection of the surfel normal N . The major axis
amax is orthogonal to amin. The length of amax is the projection
of the tangent disk radius rnt , which is approximated by imax. This
approximation takes the orientation and magnification of the LDC
tree during projection into account. Next, we calculate the coordi-
nate axis that is most parallel to amin (the y-axis in Figure 7). The
short side of the bounding box is axis aligned with this coordinate
axis to simplify scan conversion. Its height h is computed by in-
tersecting the ellipse with the coordinate axis. The width w of the

bounding box is determined by projecting the vertex at the inter-
section of the major axis and the ellipse onto the second axis (the
x-axis in Figure 7).

@z

@x
and @z

@y
are the partial derivatives of the surfel depth z with

respect to the screen x and y direction. They are constant because
of the orthographic projection and can be calculated from the unit
normal N . During scan conversion, the depth at each pixel inside
the bounding box is calculated using @z

@x
and @z

@y
. In addition, we

add a small threshold to each projected z value. The threshold pre-
vents surfels that lie on the foreground surface to be accidentally
discarded. Pixels that have a larger z than the z values of the splat-
ted tangent disk are marked as holes.

If the surface is extremely bent, the tangential planes do not
cover it completely, potentially leaving tears and holes. In addi-
tion, extreme perspective projection makes orthographic projection
a bad approximation to the actual projected tangent disk. In prac-
tice, however, we did not see this as a major problem. If the pro-
jected tangent disk is a circle, i.e., if N is almost parallel to the
viewing direction, the bounding box parallelogram is a bad approx-
imation. In this case, we use a square bounding box instead.

Using a somewhat related approach, Grossman and Dally [12]
use a hierarchical z-buffer for visibility testing. Each surfel is pro-
jected and the hole size around the surfel is estimated. The radius of
the hole determines the level of the hierarchical z-buffer where the
z-depth of the surfel will be set. This can be regarded as visibility
splatting using a hierarchical z-buffer. The advantage is that the vis-
ibility splat is performed with a single depth test in the hierarchical
z-buffer. However, the visibility splat is always square, essentially
representing a tangential disk that is parallel to the image plane. In
addition, it is not necessarily centered around the projected surfel.
To recover from those drawbacks, [12] introduces weights indicat-
ing coverage of surfels. But this makes the reconstruction process
more expensive and does not guarantee complete coverage of hid-
den surfaces.

7.4 Texture Filtering
As explained in Section 5.3, each surfel in the LDC tree stores sev-
eral prefiltered texture colors of the surfel mipmap. During render-
ing, the surfel color is linearly interpolated from the surfel mipmap
colors depending on the object minification and surface orientation.
Figure 8a shows all visible surfels of a sampled surface projected
to the z-buffer. The ellipses around the centers of the surfels mark
the projection of the footprints of the highest resolution texture pre-
filter (Section 5.3). Note that during prefiltering, we try to guar-
antee that the footprints cover the surface completely. In figure 8b
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Figure 8: Projected surfel mipmaps.

the number of samples per z-buffer pixel is limited to one by ap-
plying z-buffer depth tests. In order to fill the gaps appearing in
the coverage of the surface with texture footprints, the footprints of
the remaining surfels have to be enlarged. If surfels are discarded
in a given z-buffer pixel, we can assume that the z-buffer pixels in
the 3x3 neighborhood around it are not holes. Thus the gaps can be
filled if the texture footprint of each surfel covers at least the area of
a z-buffer pixel. Consequently, the ellipse of the projected footprint
has to have a minor radius of

p
2sz in the worst case, where sz is

the z-buffer pixel spacing. But we ignore that worst case and usep
2

2
sz, implying that surfels are projected to z-buffer pixel centers.



Figure 8b shows the scaled texture footprints as ellipses around pro-
jected surfels.

To select the appropriate surfel mipmap level, we use traditional
view-dependent texture filtering, as shown in Figure 9. A circle with
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Figure 9: Projected pixel coverage.

radius
p
2

2
sz is projected through a pixel onto the tangent plane of

the surface from the direction of the view, producing an ellipse in
the tangent plane. In this calculation, the projection of the circle is
approximated with an orthographic projection. Similar to isotropic
texture mapping, the major axis of the projected tangent space el-
lipse is used to determine the surfel mipmap level. The surfel color
is computed by linear interpolation between the closest two mipmap
levels with prefilter radii rkpre and r

k+1
pre , respectively.

7.5 Shading
The illumination model is usually applied before visibility testing.
However, deferred shading after visibility testing avoids unneces-
sary work. Grossman and Dally [12] perform shading calculations
in object space to avoid transformation of normals to camera space.
However, we already transform the normals to camera space during
visibility splatting (Section 7.3). With the transformed normals at
hand, we use cube reflectance and environment maps [28] to calcu-
late a per-surfel Phong illumination model. Shading with per-surfel
normals results in high quality specular highlights.

7.6 Image Reconstruction and Antialiasing
Reconstructing a continuous surface from projected surfels is fun-
damentally a scattered data interpolation problem. In contrast to
other approaches, such as splatting [29], we separate visibility cal-
culations from image reconstruction [22]. Z-buffer pixels with
holes are marked during visibility splatting. These hole pixels are
not used during image reconstruction because they do not contain
any visible samples. Figure 10 shows the z-buffer after rendering
of an object and the image reconstruction process.
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Figure 10: Image reconstruction.

The simplest and fastest approach, shown in Figure 10a, is to
choose the size of an output pixel so to be the same as the z-
buffer pixel size sz . Surfels are mapped to pixel centers using near-
est neighbor interpolation, shown with color squares in the figure.
Holes are marked with a black X. Recall that during forward warp-
ing each surfel stores imax, an estimate of the maximum distance
between adjacent projected surfels of a block. imax is a good esti-
mate for the minimum radius of a pixel filter that contains at least
one surfel. To interpolate the holes, we use a radially symmetric
Gauss filter with a radius rrec slightly larger than imax positioned
at hole pixel centers. Alternatively, to fill the holes we implemented

the pull-push algorithm used by Grossman and Dally [12] and de-
scribed by Gortler et al.[9].

A high quality alternative is to use supersampling, shown in Fig-
ure 10b. The output image pixel size so is any multiple of the z-
buffer pixel size sz . Dotted lines in the figure indicate image-buffer
subpixels. Rendering for supersampling proceeds exactly the same
as before. During image reconstruction we put a Gaussian filter at
the centers of all output pixels to filter the subpixel colors. The ra-
dius of the filter is rrec = max(r0rec; imax). Thus rrec is at least

as large as r0rec =
p
2

2
so, but it can be increased if imax indicates a

low density of surfels in the output image.
It is instructive to see how the color of an output pixel is deter-

mined for regular rendering and for supersampling in the absence
of holes. For regular rendering, the pixel color is found by nearest
neighbor interpolation from the closest visible surfel in the z-buffer.
The color of that surfel is computed by linear interpolation between
two surfel mipmap levels. Thus the output pixel color is calculated
from two prefiltered texture samples. In the case of supersampling,
one output pixel contains the filtered colors of one surfel per z-
buffer subpixel. Thus, up to eight prefiltered texture samples may
contribute to an output pixel for 2�2 supersampling. This produces
image quality similar to trilinear mipmapping.

Levoy and Whitted [18] and Chang et al. [4] use an algorithm
very similar to Carpenter’s A-Buffer [2] with per-pixel bins and
compositing of surfel colors. However, to compute the correct per
pixel coverage in the A-buffer requires projecting all visible sur-
fels. Max [20] uses an output LDI and an A-buffer for high qual-
ity anti-aliasing, but he reports rendering times of 5 minutes per
frame. Our method with hierarchical density estimation, visibility
splatting, and surfel mipmap texture filtering offers more flexible
speed-quality tradeoffs.

8 Implementation and Results
We implemented sampling using the Blue Moon Rendering Tools
(BMRT) ray tracer [10]. We use a sampling resolution of 5122 for
the LDC for 4802 expected output resolution. At each intersec-
tion point, a Renderman shader performs view-independent calcu-
lations, such as texture filtering, displacement mapping, and bump
mapping, and prints the resulting surfels to a file. Pre-processing
for a typical object with 6 LOD surfel mipmaps takes about one
hour.

A fundamental limitation of LDC sampling is that thin struc-
tures that are smaller than the sampling grid cannot be correctly
represented and rendered. For example, spokes, thin wires, or hair
are hard to capture. The rendering artifacts are more pronounced
after 3-to-1 reduction because additional surfels are deleted. How-
ever, we had no problems sampling geometry as thin as the legs and
wings of the wasp shown in Figure 1 and Figure 12.

The surfel attributes acquired during sampling include a surface
normal, specular color, shininess, and three texture mipmap levels.
Material properties are stored as an index into a table. Our system
does currently not support transparency. Instead of storing a normal
we store an index to a quantized normal table for reflection and
environment map shading [28]. Table 1 shows the minimum storage
requirements per surfel. We currently store RGB colors as 32-bit
integers for a total of 20 Bytes per surfel.

Data Storage
3 texture mipmap levels 3� 32 bits
Index into normal table 16 bit
LDI depth value 32 bit
Index into material table 16 bit
Total per sample: 20 Bytes

Table 1: Typical storage requirements per surfel.

Table 2 lists the surfel objects that we used for performance anal-
ysis with their geometric model size, number of surfels, and file size



Figure 11: Tilted checker plane. Reconstruction filter: a) Nearest neighbor. b) Gaussian filter. c) Supersampling.

before and after 3-to-1 reduction. All models use three LODs and
three surfel mipmap levels. The size of the LDC tree is about a
factor of 1.3 larger than the LDC acquired during sampling. This

Data # Polys 3 LDIs 3-to-1 Reduced
Salamander 81 k 112 k / 5 MB 70 k / 3 MB
Wasp 128 k 369 k / 15 MB 204 k / 8 MB
Cab 155 k 744 k / 28 MB 539 k / 20 MB

Table 2: Geometric model sizes and storage requirements (# surfels
/ file size) for full and 3-to-1 reduced LDC trees.

overhead is due to the octree data structure, mainly because of the
pointers from the lower resolution blocks to surfels of the sampled
LDC. We currently do not optimize or compress the LDC tree.

Figure 1 shows different renderings of surfel objects, including
environment mapping and displacement mapping. Figure 12 shows
an example of hole detection and image reconstruction. Visibility
splatting performs remarkably well in detecting holes. However,
holes start to appear in the output image for extreme closeups when
there are less than approximately one surfel per 30 square pixels.

Figure 12: Hole detection and image reconstruction. a) Surfel ob-
ject with holes. b) Hole detection (hole pixels in green). c) Image
reconstruction with a Gaussian filter.

To compare image quality of different reconstruction filters, we
rendered the surfel checker plane shown in Figure 11. There is an
increasing number of surfels per pixel towards the top of the image,
while holes appear towards the bottom for nearest neighbor recon-
struction. However, a checker plane also demonstrates limitations
of the surfel representation. Because textures are applied during
sampling, periodic texture patterns are stored explicitly with the
object instead of by reference. In addition, flat surfaces are much
more efficiently rendered using image space rasterization, where
attributes can be interpolated across triangle spans.

Table 3 shows rendering performance broken down into percent-
ages per major rendering tasks. The frame rates were measured on
a 700 MHz Pentium III system with 256 MB of SDRAM using an
unoptimized C version of our program. All performance numbers
are averaged over one minute of an animation that arbitrarily rotates

Data WRP VIS SHD REC CLR fps
Output image: 256� 256

Salamander 39% 3% 28% 17% 13% 11.2
Wasp 61% 4% 21% 8% 8% 6.0
Cab 91% 2% 5% 1% 1% 2.5

Output image: 480� 480
Salamander 14% 18% 31% 22% 16% 4.6
Wasp 3to1 29% 17% 29% 15% 9% 2.7
Wasp 3LDI 48% 13% 22% 11% 6% 2.0
Wasp SS 15% 22% 28% 18% 16% 1.3
Cab 74% 7% 11% 5% 3% 1.4

Output image: 1024� 1024
Salamander 5% 14% 26% 32% 23% 1.3
Wasp 13% 19% 25% 26% 17% 1.0
Cab 16% 36% 24% 16% 8% 0.6

Table 3: Rendering times with breakdown for warping (WRP), vis-
ibility splatting (VIS), Phong shading (SHD), image reconstruction
(REC), and framebuffer clear (CLR). Reconstruction with pull-push
filter. All models, except Wasp 3LDI, are 3-to-1 reduced. Wasp SS
indicates 2x2 supersampling.

the object centered at the origin. The animation was run at three dif-
ferent image resolutions to measure the effects of magnification and
holes.

Similar to image-based rendering, the performance drops almost
linearly with increasing output resolution. For 2562 or object mini-
fication, the rendering is dominated by warping, especially for ob-
jects with many surfels. For 10242 , or large object magnification,
visibility splatting and reconstruction dominate due to the increas-
ing number of surface holes. The performance difference between
a full LDC tree (Wasp 3LDI) and a reduced LDC tree (Wasp 3to1)
is mainly in the warping stage because fewer surfels have to be
projected. Performance decreases linearly with supersampling, as
shown for 2x2 supersampling at 4802 resolution (Wasp SS). The
same object at 10242 output resolution with no supersampling per-
forms almost identically, except for slower image reconstruction
due to the increased number of hole pixels.

To compare our performance to standard polygon rendering, we
rendered the wasp with 128k polygons and 2.3 MB for nine tex-
tures using a software-only Windows NT OpenGL viewing pro-
gram. We used GL LINEAR MIPMAP NEAREST for texture fil-
tering to achieve similar quality as with our renderer. The average
performance was 3 fps using the Microsoft OpenGL implementa-
tion (opengl32.lib) and 1.7 fps using Mesa OpenGL. Our unopti-
mized surfel renderer achieves 2.7 fps for the same model, which
compares favorably with Mesa OpenGL. We believe that further
optimization will greatly improve our performance.



Choosing the block size b for the LDC tree nodes has an influ-
ence on block culling and warping performance. We found that
a block size of b = 16 is optimal for a wide range of objects.
However, the frame rates remain practically the same for different
choices of b due to the fact that warping accounts for only a fraction
of the overall rendering time.

Because we use a z-buffer we can render overlapping surfel ob-
jects and integrate them with traditional polygon graphics, such as
OpenGL. However, the current system supports only rigid body an-
imations. Deformable objects are difficult to represent with surfels
and the current LDC tree data structure. In addition, if the surfels
do not approximate the object surface well, for example after 3-to-
1 reduction or in areas of high curvature, some surface holes may
appear during rendering.

9 Future Extensions
A major strength of surfel rendering is that in principal we can con-
vert any kind of synthetic or scanned object to surfels. We would
like to extend our sampling approach to include volume data, point
clouds, and LDIs of non-synthetic objects. We believe that substan-
tial compression of the LDC tree can be achieved using run length
encoding or wavelet-based compression techniques. The perfor-
mance of our software renderer can be substantially improved by
using Pentium III SSE instructions. Using an occlusion compat-
ible traversal of the LDC tree [21], one could implement order-
independent transparency and true volume rendering.

Our major goal is the design of a hardware architecture for sur-
fel rendering. Block warping is very simple, involving only two
conditionals for z-buffer tests [11]. There are no clipping calcula-
tions. All framebuffer operations, such as visibility splatting and
image reconstruction, can be implemented using standard rasteri-
zation and framebuffer techniques. The rendering pipeline uses no
inverse calculations, such as looking up textures from texture maps,
and runtime texture filtering is very simple. There is a high degree
of data locality because the system loads shape and shade simul-
taneously and we expect high cache performance. It is also possi-
ble to enhance an existing OpenGL rendering pipeline to efficiently
support surfel rendering.

10 Conclusions
Surfel rendering is ideal for models with very high shape and shade
complexity. As we move rasterization and texturing from the core
rendering pipeline to the preprocessing step, the rendering cost per
pixel is dramatically reduced. Rendering performance is essentially
determined by warping, shading, and image reconstruction — oper-
ations that can easily exploit vectorization, parallelism, and pipelin-
ing.

Our surfel rendering pipeline offers several speed-quality trade-
offs. By decoupling image reconstruction and texture filtering we
achieve much higher image quality than comparable point sample
approaches. We introduce visibility splatting, which is very effec-
tive at detecting holes and increases image reconstruction perfor-
mance. Antialiasing with supersampling is naturally integrated in
our system. Our results demonstrate that surfel rendering is capable
of high image quality at interactive frame rates. Increasing proces-
sor performance and possible hardware support will bring it into the
realm of real-time performance.
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Spectral Processing of Point-Sampled Geometry
Mark Pauly Markus Gross

ETH Zurich

Abstract
We present a new framework for processing point-sampled
objects using spectral methods. By establishing a concept of
local frequencies on geometry, we introduce a versatile spectral
representation that provides a rich repository of signal process-
ing algorithms. Based on an adaptive tesselation of the model
surface into regularly resampled displacement fields, our
method computes a set of windowed Fourier transforms creating
a spectral decomposition of the model. Direct analysis and
manipulation of the spectral coefficients supports effective fil-
tering, resampling, power spectrum analysis and local error con-
trol. Our algorithms operate directly on points and normals,
requiring no vertex connectivity information. They are computa-
tionally efficient, robust and amenable to hardware acceleration.
We demonstrate the performance of our framework on a selec-
tion of example applications including noise removal, enhance-
ment, restoration and subsampling.

Keywords: Signal processing, spectral filtering, subsampling,
Fourier transform, point-based representations

1 Introduction
Today’s range sensing devices are capable of producing highly
detailed surface models that contain hundreds of millions of
sample points. Due to a variety of physical effects and limita-
tions of the model acquisition procedure, raw range datasets are
prone to various kinds of noise and distortions, requiring sophis-
ticated processing methods to improve the model quality. In
spite of the recent advances made in mesh optimization, tradi-
tional mesh processing algorithms approach their limits, since
triangle primitives implicitly store information about local sur-
face topology including vertex valence or adjacency. This leads
to a substantial additional overhead in computation time and
memory costs. With increasing model size we thus experience a
shift from triangle mesh representations towards purely point-
based surface descriptions. For instance, recent work concen-
trated on point-based rendering pipelines [17, 18] where point
samples without connectivity are proposed as rendering primi-
tives. Surprisingly, however, little work has been done so far on
direct processing or manipulation of point-sampled geometry. In
this paper we present a new framework for spectral analysis and

processing of point-sampled objects. The method operates
directly on irregular point sets with normals and does not require
any a priori connectivity information. Our framework extends
so-called windowed Fourier transforms - a concept being well
known from signal processing - to geometry.

The Fourier transform is a powerful and widely used tool for
data analysis and manipulation. In particular, image processing
techniques successfully exploit frequency representations to
implement a variety of advanced spectral processing algorithms
comprising noise removal, enhancement, feature detection and
extraction, up/down-sampling, etc. [6]. Extending this approach
to general geometric models is difficult due to a number of
intrinsic limitations of the conventional Fourier transform: First,
it requires a global parameterization on which the basis func-
tions are defined. Second, most FT algorithms require a regular
sampling pattern [16]. These prerequisites are usually not satis-
fied by common discrete geometry, rendering the standard Fou-
rier transform inoperable. A further limitation of traditional
Fourier representations is the lack of spatial localization making
it impractical for local data analysis. We will show how these
limitations can be overcome and present a generalization of the
windowed FT to general 2-manifolds. The basic idea behind our
framework is to preprocess the raw irregular point cloud into a
model representation that describes the object surface with a set
of regularly resampled height fields. These surface patches form
“windows” in which we compute a discrete Fourier transform to
obtain a set of local frequency spectra. Although being confined
to individual surface patches, our windowed FT provides a pow-
erful and versatile mechanism for both local and global process-
ing. The concept of frequency on point-sampled geometry gives
us access to the vast space of sophisticated spectral methods
resulting from tens of years of research in signal processing. 

In this paper we will focus on two classes of such methods:
Spectral filtering and resampling. We will point out how sophis-
ticated filtering operations can be implemented elegantly by
analyzing and modifying the coefficients of the frequency spec-
trum. Possible applications include noise removal, analysis of
the surface microstructure and enhancement. Further we present
a fast algorithm for adaptively resampling the point geometry,
using the spectral representation to determine optimal sampling
rates. This method is particularly useful for reducing the com-
plexity of overly dense point-sampled models. By using FFT
and other signal processing algorithms our framework is effi-
cient in computation and memory costs, amenable to hardware
acceleration and allows us to process hundreds of millions of
points on contemporary PCs.

1.1 Previous Work
Extending the concept of frequency onto geometry has gained
increasing attention over the last years. Conceptually, this gener-
alization can be accomplished by the eigenfunctions of the
Laplacian. Taubin [19] pioneered spectral methods for irregular

Figure 1: Spectral processing pipeline. Processing stages are depicted as rectangles, rounded boxes represent input/output data of each stage.
Gray background color indicates the preprocessing phase.
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meshes using a discrete Laplacian to implement iterative Gauss-
ian smoothing for triangle meshes. This method has later been
improved by Desbrun et al [4] who tackled the difficulty of dis-
cretizing a geometric Laplacian by introducing curvature flow
for noise removal. Kobbelt [12] presented a novel concept for
multiresolution variational fairing and modeling, where high
mesh frequencies are attenuated by iteratively solving dis-
cretized Laplacian equations. While being based on signal pro-
cessing methodology, these algorithms do not compute an
explicit spectral representation of the object surface. As a conse-
quence, typical filters such as Gaussian smoothing have to be
implemented in the spatial domain. In contrast, our method
robustly generates a set of local Fourier spectra that can be
explicitly analyzed and manipulated. This supports much more
powerful filtering, e.g. least-squares optimal or inverse, feature
enhancement and Fourier sampling. Specifically, we can exam-
ine the power spectrum of the surface signal to estimate optimal
filter parameters or determine the noise level present in the data. 

Guskov et al [8] introduced signal processing methods using
subdivision and pyramid algorithms. While they achieve qualita-
tively remarkable effects such as band-pass filtering and
enhancement, their notion of frequency is based on detail vec-
tors between different levels of a mesh hierarchy. Our scheme
uses the Fourier transform, which efficiently computes a projec-
tion into the space of eigenfunctions of the Laplacian. Within
this framework concepts like natural vibration modes or spatial
frequency are solidly founded in the theory of differential calcu-
lus. This allows us to exploit many results from the extensive
work on Fourier theory including Sampling or Parseval’s theo-
rems. With the former we obtain a profound means to determine
optimal sampling rates, while the latter supports local error con-
trol. Lately, Karni and Gotsman [11] introduced a method for
spectral compression of triangle meshes that is based on a fixed
partitioning of the mesh into submeshes. Effective compression
is achieved by a direct decomposition of these patches into the
eigenfunctions of the Laplacian. While their notion of frequency
is strictly local, the explicit eigenvector computations are expen-
sive and potentially unstable, constituting serious limits for the
efficient processing of large patch sizes. 

All of the above methods focus on triangle meshes, relying
heavily on connectivity information between vertices. In con-
trast, our method is purely point-based, requiring only vertex
position and associated normals. This allows direct processing
of scanned data without the need to construct polygonal meshes,
making it particularly suitable for the very large models obtained
with modern range scanners [14]. 

1.2 Algorithm Overview 
Figure 1 gives a high-level overview of our spectral processing
pipeline. In the first stage we split the point-sampled model into
a number of overlapping patches. A patch is defined as a collec-
tion of sample points that represents a connected region of the
underlying surface. The tesselation is done in such a way that the
surface represented by each patch can be expressed as a dis-
placement field over a planar domain. The so generated patch
layout forms the basis of our windowed Fourier transform and
the following stages operate locally on individual patches. First
the patch surface is resampled on a regular grid using a fast scat-
tered data approximation (SDA). Then we apply a Discrete Fou-
rier Transform (DFT) to obtain the spectral representation of the
patch surface. Using appropriate spectral filters we can directly
manipulate the Fourier spectrum to achieve a variety of effects
such as de-noising or enhancement. A subsequent inverse DFT
reconstructs the filtered patch surface in the spatial domain. We
can then also utilize the spectral information to adaptively resa-
mple the patch surface. At the end of the pipeline is the recon-
struction stage, where the processed patches are stitched
together to yield the final object surface. This requires careful
attention at the patch boundaries, where we create a smooth tran-
sition by blending the overlapping parts of adjacent patch sur-
faces. As indicated in Figure 1, the processing pipeline can be

split into two phases: Patch layout generation, SDA and DFT
can be separated into a preprocessing step. We also precompute
the parameter mapping between adjacent patches and the blend-
ing function used in the reconstruction. This leaves spectral
analysis, inverse DFT, resampling and reconstruction as the
actual processing stages. We will now describe the individual
stages of the processing pipeline in more detail, following the
order depicted in Figure 1.

2 Creating the Patch Layout
In this section we present a new method for creating a continu-
ous surface representation from an unordered set of sample
points and associated normals. We assume that the sample points
represent a smooth two-manifold of arbitrary topology and pos-
sibly multiple connected components. Further we require the
sampling to be dense enough in the sense that adjacent points in
3-space with similar normal orientation belong to the same local
neighborhood of the surface [1].
The goal is to describe the object surface with a set of patches
that can be represented as scalar height fields. To achieve this we
grow patches by accumulating adjacent sample points subject to
a normal cone condition. This criterion states that the aperture
angle of the cone spanned by the normals of a patch’s sample
points is less than . Bounding the normal cone width guaran-
tees that no foldovers can occur, i.e. that we can bijectively map
the patch surface to a height field representation over a planar
domain. In practice we choose  as maximum normal cone
width, as this provides a more uniform parameter mapping and
thus makes the following scattered data approximation more
robust. We compute the normal cone with an adapted version of
Gärtner’s miniball algorithm [3]. It determines the smallest
enclosing sphere of a set of normal vectors interpreted as points
on the unit sphere. The vector through the center of the miniball
gives the normal cone center and from its radius we can deter-
mine the aperture angle (see Figure 2). 

Our algorithm for generating the patch layout proceeds in two
stages: The first stage creates an initial fine-grain patch layout
by clustering adjacent sample points, while the second stage
merges adjacent clusters into patches using an optimization
approach (see also Figure 4). During this iterative growth we
ensure at all times that the normal cone condition is satisfied.

Clustering.   We first arrange the sample points in a binary
space partition (BSP) tree by recursively splitting the sampling
set along the longest axis of its bounding box. The BSP structure
implicitly encodes the 3D adjacency information, requiring
approx. 10% of the input model size in additional memory over-
head. We choose the leaves of the tree, which contain exactly
one sample point, as our initial clusters. Now we successively
merge clusters with a common parent in the BSP tree, since
these are neighbors in 3-space. However, as Figure 3 illustrates,
a cluster has potentially many other neighbors and allowing only
sibling clusters to be merged is too restrictive to lead to a useful
patch layout. Therefore we stop the clustering stage as soon as
the clusters reach a suitable size (typically 25-100 sample points,
depending on model size). We will call the patches created by
clustering leaf patches, as they are leaves of the final BSP tree.

Figure 2: The miniball algorithm provides an accurate esti-
mation of the cone spanned by a set of normal vectors (red).
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Patch Merging.   At the beginning of the second stage we
have to compute local neighborhood information, i.e. for each
leaf patch we need to determine a list of all adjacent leaf patches.
A leaf patch is confined by six BSP split planes, each of which
corresponds to an internal node of the tree. In a first step we col-
lect for each split plane all leaf patches that border on either side
of the plane. Then we project the bounding boxes of these leaf
patches onto the split plane and check for overlaps of the projec-
tions. If an overlap occurs, we mark the leaf patches as neigh-
bors (see Figure 3). 

Using the adjacency information of the leaf patches, we can now
apply a more sophisticated merging technique. The idea is to use
an optimization approach that merges patches according to a
local quality metric . Let  and  be neighboring patches
such that  is a potential merge candidate pair. Then

 gives a relative measure of the quality of the patch layout
obtained after merging  and , with small values of  indi-
cating a high quality. By iteratively merging the pair with the
highest quality gain we can locally optimize the patch layout.
Merge candidate pairs are arranged in a priority queue that is
ordered by increasing  and initialized with all pairs of neigh-
boring leaf patches. Now we successively remove the pair with
the highest priority (i.e. lowest ) from the queue and merge
the two patches if their union satisfies the normal cone condi-
tion. Then we update the priorities and neighborhood informa-
tion of all affected pairs accordingly.  is determined using the
following formula:

. (1)

Each of the terms of Equation 1 seeks to optimize a specific
quality feature of the final patch layout. Since the individual
quality measures are difficult to normalize, we combine them in
a product to yield .

•  assigns a high priority to small patches and thus
reduces undesirable fragmentation:

, 

where  is the number of samples in patch .

•  penalizes the increase in normal cone width of the
merged patch :

,

where  is the aperture angle of the normal cone of
. This leads to a better adaptation of the patch layout to

the local curvature of the underlying surface, since flat
regions are quickly merged into large patches, while
highly curved regions will be covered by smaller patches.

•  is introduced to control the boundary of the patches:

,

where  counts the number of leaf patches of ,
while  counts only those leaf patches that lie on its
boundary1. Thus  seeks to minimize the length of the

patch boundary relative to the patch area. This will favour
roughly circular-shaped patches, which is beneficial for
the later SDA and DFT processing stages.

•  is used to regularize the patch distribution:

,

where  is a spring energy term.

It is derived by placing a spring with tension  on each
edge from the center  of  to the center
of all neighboring patches .

The merging process terminates as soon as no more patches can
be merged without violating the normal cone condition. To have
additional control over the granularity of the patch layout, the
user can specify a maximum patch size in terms of number of
sample points or spatial extent. One could also assign different
weights to each of the individual quality measures by using
additional exponents in Equation 1. In practice we found, how-
ever, that equal weights generally lead to satisfactory results.

Figure 4 illustrates the two stages of the patch layout genera-
tion for the simple example of a sphere. Figure 13, 15 and 16
show the final patch layout for more complex point-sampled
models. Observe how the distribution and shape of the patches
adapts to the geometry, i.e. in regions of high curvature we have
more and smaller patches than in flat parts of the surface. 

3 Scattered Data Approximation
The patch generation algorithm does not require nor create any
connectivity information of individual samples. At this point a
patch is simply a set of irregular sample points without any addi-
tional knowledge about the spatial relations between them. The
goal of the next stage of the processing pipeline is to create a
continuous surface representation that describes the patch sur-
face as a scalar displacement field sampled at regular intervals.
Functional Mapping.   The first step in doing so is to define
the local coordinate frame of the height field representation. We
call the plane specified by the center of a patch’s normal cone its
base plane (see Figure 2). It defines a coordinate transformation

 that maps a sample  given in world coordinates
to , where  is the displacement from the
base plane at parameter values . Then we compute the
smallest enclosing box of all  pairs on the base plane. This
allows us to optimally align the rectangular sampling grid with
the sample points (see Figure 5).
Overlap.   As mentioned before, we need to let patches overlap
to handle boundary effects during the reconstruction stage. This
is achieved by increasing the size of the parameter rectangle and
including all sample points from neighboring patches that map
into the enlarged parameter domain (see Figure 5, right). We
check for each boundary point, if it satisfies the normal cone
condition. Here it has proven useful to increase the maximum
normal cone width for boundary points by , allowing more
information from the underlying surface to be included in the

Figure 3: Neighborhood information for leaf patches (2D for
illustration). Thick lines (resp. black dots) indicate the BSP split
planes that confine the green patch. Patch 1 and 6 are neighbors
because their projections onto the split plane overlap. Note that
neighbors can be distributed over the whole BSP tree.
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overlap region. For the applications of this paper we found an
overlap size of 10% of the interior parameter box sufficient for
creating a smooth transition at the boundaries during reconstruc-
tion.

Regular Sampling.   As Figure 5 illustrates, the sampling pat-
tern on the base plane is in general irregular. Standard spectral
transforms such as Cosine or Fourier transforms require regu-
larly sampled input data, however. Therefore we apply a fast,
hierarchical scattered data approximation, which projects the
displacement field onto a regular grid. We use linear B-Spline
basis functions centered at each grid point, such that the support
of each basis touches the center of its eight neighboring basis
functions. Linear B-Splines allow for efficient evaluation due to
their compact support, and interpolate the original samples pro-
vided the sampling rate is sufficiently high. We utilize the scat-
tered data approximation method presented by Gortler et al. [7]
for image based rendering and refer to there for details. As
shown in Figure 6, this algorithm proceeds in three phases: 

• Splatting computes weighted averages of the sample
points to create an initial approximation of the coefficients
of the basis functions. Due to the irregularity of the sam-
ple points this first approximation may still contain holes,
i.e. undefined regions, that need to be filled.

• Pull iteratively generates lower resolution approximations
through hierarchical convolution filtering.

• Push fills the holes in the final patch by successively
blending approximations at different resolutions.

We set the grid size  proportional to the number  of inte-
rior and boundary points of the patch: ,

, where  with oversampling fac-
tor  (see Figure 5). For all our models we chose , which
leads to an approximation error1 of less than 0.01%. Note that
substantially smaller grid sizes introduce some noticeable low
pass-filtering due to the averaging of the splatting phase. 

As explained above, our patch layout describes a surface by
a set of scalar-valued displacement coefficients. A similar
approach was taken for displaced subdivision surfaces [13] and
normal meshes [9] that achieve staggering mesh compression
rates. Both methods, however, require the costly computation of
a coarse triangle mesh to obtain the base domain for the dis-
placements. In addition, nontrivial parameterizations are manda-
tory to keep track of coefficients. This creates a substantial
computational overhead, making both representations less suit-
able for our purposes. The patch layout scheme is much more
simple and neither requires triangle meshes nor mesh simplifica-
tion. The described procedures operate directly on point clouds,
making them fast and efficient even for very large datasets (see
also Table 1).

4 Discrete Fourier Transform
The surface representation created by the SDA describes a
point-sampled model with a set of overlapping patches, each of
which satisfies the Fourier requirements of regular sampling dis-
tribution and Euclidean domain. We can thus apply a discrete
Fourier transform (DFT) using a 2D box window function2 to
obtain a spectral decomposition of the surface model. In order to
better understand what follows, we give a brief introduction of
the DFT, mentioning only those properties that we directly
exploit in our algorithms. For more details we refer to textbooks
such as [2].

The two-dimensional DFT is essentially a basis transform
into the space of eigenfunctions of the Laplacian. Given an input
signal  defined on a regular grid of size , the coefficients
of the DFT  can be written as

, (2)

where  and  are the discrete
frequencies. Using a 2D Fast Fourier transform (FFT), we can
compute the DFT in  operations, instead of

 operations required for the direct evaluation of Equa-
tion 2 [5]. Fundamental for the implementation of the spectral
filters described below is the convolution theorem. It relates a
convolution  of two signals  and  in the spatial domain
with a multiplication in the spectral domain via the Fourier
transform:

. (3)

Instead of doing a computationally expensive (filtering) convo-
lution in the spatial domain, we can thus perform a cheap multi-
plication in the frequency domain using the DFT and its inverse.
Power Spectrum.   The power spectrum  is the Fourier
transform of the autocorrelation function of a signal :

, (4)

where the asterisk denotes the complex conjugate. Power spec-
trum estimation is a widely used tool in data analysis. As illus-
trated in Figure 7, it allows to estimate the signal-to-noise ratio

Figure 5: Left: Smallest enclosing box of the interior sample
points in the parameter plane. Right: extended parameter do-
main with regular sampling grid. The red dots indicate boundary
points that have been included from neighboring patches.

Figure 6: Scattered data approximation for a patch on the
forehead of the Happy Buddha. Different colors illustrate the
displacement from the base plane with dark blue pixels indicat-
ing holes. The latter are quickly filled during the pull phase by
halving the resolution in each dimension. The final patch is cre-
ated in the push phase, where the arrows indicate which grids are
blended.
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and can thus be used to optimize filter characteristics such as
cut-off frequency or pass- and stop-band. Using the convolution
theorem, we can directly compute  from the spectral coeffi-
cients, i.e.  with .

Error Estimation.   Another important result from Fourier
theory is Parseval’s theorem

, (5)

which relates the signal energy in spatial and frequency
domains. We can utilize this property for estimating the error
introduced by filtering the spectral coefficients: Suppose

 is a filtered version of the spectrum .
Then the -norm of the difference  is given by

(6)

Thus we have explicit control over the error introduced when
modifying the spectral coefficients.

5 Spectral Analysis
The frequency spectrum obtained by the DFT provides us with a
spectral representation of the patch surface. The basis functions
in the spectral domain represent natural vibration modes of the
surface, thus relating specific surface features to certain fre-
quency intervals. Low frequencies, for instance, represent the
overall geometric shape, while high frequencies account for
small geometric detail and noise. With these semantics we can
perform elaborate filtering operations by manipulating the fre-
quency spectrum. Figure 8 shows various such filters with the
corresponding transfer functions. Low-pass filtering eliminates
high frequencies and thus leads to surface smoothing. Observe
that the ideal low-pass filter with its sharp cut-off frequency pro-
duces the well-known ringing artefacts [6], which are clearly
visible as surface ripples in the image. This phenomenon can
easily be explained with the convolution theorem: Multiplying
the frequency spectrum with the box function of the ideal filter
is equivalent to convolving the original surface with a sinc func-
tion (see Figure 9, left image). When using a Gaussian transfer
function for surface smoothing, no ringing artefacts occur, since
the corresponding filter kernel in the spatial domain is also a
Gaussian (Figure 9, right). The lower left image of Figure 8
shows a band-stop filter that attenuates middle frequencies. This
leads to overall surface smoothing while still retaining the
microstructure of the surface material. We can also enhance cer-
tain features of the surface by scaling the frequency spectrum
appropriately (Figure 8, lower right).

Signal Restoration.   Real imaging systems often introduce
some undesirable low-pass filtering since the physical apparatus
does not have a perfect delta-function response. This blurring
can be reduced with an inverse filter that amplifies high frequen-
cies. Inverse filtering, however, tends to instabilities and is
extremely sensitive to noise. To restore the object surface in the

presence of blur and noise we apply a least-squares optimal fil-
ter or Wiener filter [10]. Suppose we have a blurred and noisy

input signal  and we want to reconstruct the underlying origi-
nal signal . Applying the spectral filter function  to the Fou-
rier transform of  yields the filtered signal

. The goal is to determine  such that 

(7)

is minimized. As shown in [10] this can be achieved by
power spectrum analysis, yielding

, (8)

where ,  and  are the (estimated) power spectra of
the blurred signal, noise and imaging system response, respec-
tively (see Figure 7, right). Note that effective Wiener filtering
relies on an accurate estimation of these quantities, which often
requires some knowledge of the system’s impulse response (see
also Figure 13).

Figure 7: Power spectrum estimation. Normalized logarith-
mic plot of the power spectrum of a typical patch surface (left).
The annotation at each circle indicates the relative amount of
power contained within the circle. On the right an (idealized) il-
lustration for signal-to-noise ratio estimation. 
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Figure 9: Convolution filter kernels in the spatial domain. 
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6 Resampling
After manipulating the frequency spectrum, an inverse DFT
takes us back into the spatial domain. If we only want to filter
the input model without affecting the sampling pattern and den-
sity, we sample the filtered patch surface at the parameter values
of the original sample points. However, for many applications it
is desirable to have some mechanism for adaptively refining a
surface through upsampling or reducing the model size through
subsampling. The latter is particularly important when dealing
with very large datasets, which often cannot be handled well in
their full resolution. 
Fourier Sampling.   The Fourier spectrum provides us with
an elegant way to estimate the optimal sampling rate when sub-
sampling the patch surface. Suppose we have a bandlimited sig-
nal  with Nyquist frequency , i.e. all coefficients associated
with frequencies greater than  are zero. Then the sampling
theorem of Fourier theory states that we can reconstruct 
exactly if the sampling interval is less or equal to . Thus
to (uniformly) subsample the patch surface we proceed as fol-
lows: First we low-pass filter the frequency spectrum to obtain a
bandlimited signal. Using the power spectrum and error estima-
tion described in Section 4, we can adjust the filter parameters to
match the desired maximum error. Then we apply the sampling
theorem to compute the optimal sampling interval for the fil-
tered signal. Thus we can control the sampling rate by specify-
ing the maximum error tolerance.
Sampling Points and Normals.   To determine a patch sur-
face point at arbitrary parameter values, our current implementa-
tion uses bilinear interpolation and computes the corresponding
normals with first order divided differences. Higher order
schemes can easily be implemented as well. Alternatively, we
could use the subdivision scheme presented in [13], where the
scalar displacements are interpreted as subdivision coefficients.

7 Reconstruction
At this stage of the processing pipeline we need to reassemble
the object surface by stitching together the processed patches.
Some care needs to be taken here, since individual processing of
patches can lead to discontinuities at the patch boundaries. To
create a smooth transition between patches we blend the patch
surfaces in their regions of overlap. The blending is done by
computing a convex combination of corresponding points of
neighboring patches using weights given by a precomputed
blending function. 
Parameter Mapping.   To blend points from neighboring
patches we need to define a mapping between the different
parameter domains in the regions of overlap. Suppose we have
an interior point  in patch  and that the
overlap of patch  also covers . The corresponding parame-
ter values  can be determined by first mapping  to
world space using the inverse mapping transform of . This
gives us the point  which is then projected onto the base plane
of . Now we sample  at  to obtain , which is
mapped to world coordinates to yield . The blended sample
point  is then computed as the convex combination

, where  and  are the
weights given by the blending functions at  and

, respectively. Multiple patch overlaps are handled anal-
ogously. To improve performance we can store the parameter
mapping in (multi-layered) texture maps using bilinear interpo-
lation to compute the parameter correspondence of intermediate
points.
Blending function.   The blending function for a patch is
generated by first splatting all interior samples (see Figure 5)
onto a regular grid. This grid is aligned to the sample points in
the same manner as the SDA grid, but can be of different resolu-
tion. Subsequent convolution filtering with a Gaussian kernel
creates a smooth decay to zero at the patch boundary (see Figure
10). Thus the more we approach the rim of the overlap region of

the patch, the smaller will the influence of the sample point be in
the convex combination of the blended sample. Splatting can be
done using conventional graphics hardware with splat size
equivalent to the size of the convolution matrix. The latter is
chosen to match the size of the overlap as defined in Section 3,
which for all our test cases was sufficient to guarantee hole-free
reconstruction. Note that blending function and parameter corre-

spondence are generated in the preprocessing phase, i.e. operate
on the original sample points prior to spectral filtering. 

Blending Normals.   A smooth boundary transition of nor-
mals is achieved analogously to the convex blending used for
geometric position. Substantial changes of the shape of the patch
surfaces, however, may cause this simple method to fail. Con-
sider the situation of Figure 11, where the patch processing has
created a significant gap between the two surfaces. While the

blending of position works fine, the blended normals do not ade-
quately describe the tangent plane of the surface. We detect such
cases using a simple conservative heuristic that takes into
account the positions of the initial and blended points. The cor-
rect normal can then be approximated by sampling a small num-
ber of points in the vicinity of the considered sample and fitting
a least-squares tangent plane through these points. While com-
putationally more expensive, this normal estimation is rarely
required. In all our test cases less than 1% of all normals have
been computed in this way, rendering the additional overhead
negligible.

Blending the sampling rate.    The resampling strategy
described in Section 6 uses the sampling theorem to determine
the sampling rate for each patch. Since adjacent patches can dif-
fer significantly in their spectral representation, this may lead to
sharp changes of the sample density at the patch boundaries. For
most applications, however, a smooth transition of the sampling
rate is preferable. To achieve this, we blend the sampling rate
analogously to the blending of geometric positions and normals.

This gives us a continuous function describing the sampling rate,
which is then discretized on a regular grid. Each grid value
serves as an index into a list of precomputed sampling patterns,

x fc
fc

x
1 2fc( )⁄

p1 u1 v1 h1, ,( )= P1
P2 p1

u2 v2,( ) p1
P1

q1
P2 P2 u2 v2,( ) p2

q2
q

q ω1q1 ω2q2+( ) ω1 ω2+( )⁄= ω1 ω2
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Figure 10: Blending function for the patch of Figure 6. The
left image shows the splatted interior sample points with black
dots indicating the sample positions. The right image shows the
blending function after convolution filtering.

Figure 11: In case of substantial filtering, the blended normals
(green) can differ significantly from the correct normals (red).

Figure 12: Blending the sampling rate at the patch boundary.
Left: Continuous sampling rate. Middle: Discretized area
weighted sampling rate. Right: Resulting sampling pattern.



Preprint Version - To appear in SIGGRPAH 01 Conference Proceedings

generated using Mitchell’s algorithm for Poisson disk sampling
[15]. Thus we achieve a gradual change of sampling density at
patch boundaries (see Figure 12).

8 Results & Discussion
The filtering and subsampling methods described in Sections 5
and 6 operate locally on individual patches. To achieve global
effects we apply the same filter, resp. the same relative error
bound for subsampling, to each patch after appropriate scaling
of the frequency spectrum. 

Figure 13 shows a Gaussian and a restoration filter applied
to a laser range scan of a human head. In our current implemen-
tation the parameters of the Wiener filter have to be adjusted
interactively by investigating the power spectra of a small num-
ber of patches to determine the signal-to-noise ratio. Observe
how the Wiener filter preserves geometric features that are
smoothed away by the Gaussian.

Interactive local editing operations on the head of the St.
Matthew statue are illustrated in Figure 15. The user can draw a
curve on the surface to mark a region of interest (red and blue
circles). The patches are split adaptively at this curve and spec-
tral processing is only applied to those patches within the speci-
fied area. Note how the patch blending automatically creates a
smooth transition between the filtered and non-filtered areas.

Figures 14 and 16 show subsampling for Michelangelo’s
David. The original data set contains 4,128,614 vertices, which
have been reduced to 287,165 in the subsampled version, corre-
sponding to approx. 98% of patch signal power. While the sam-
pling of the original model is fairly uniform, the spectral
subsampling creates a nonuniform sampling distribution that
locally adapts to the geometry. Strictly speaking, the notion of
error as established by Equations 5 and 6 only holds for the
patch interior. The local frequency information in the overlap
region - and hence the error - is influenced by the blending func-
tion, which in turn results from the convolution process depicted
in Figure 10. Our experimental investigations showed, however,
that using the same relative maximum error for each patch leads
to a bounded global error and enables intuitive global control. A
more thorough analysis of the error behavior at the patch bound-
ary is a main focus of future research.

Performance.   Table 1 shows some timing data for our spec-
tral processing pipeline. Note that the bulk of the computation
time is spent in the preprocessing stage. Due to its scalar repre-
sentation, our surface description (comprising SDA and blend-
ing grids and parameter mapping) requires less than 40% of the
memory of the input model (points and normals) even though no
specific compression scheme is applied.

Robustness.   An important issue deserving discussion is the
effect of a specific patch layout on the final reconstructed sur-
face. Naturally, we want the spectral processing to be invariant
under different patchings. While our patching scheme is robust
against moderate parameter variations, drastic modifications
consequently lead to differences in patch size and shape. Never-
theless, for all examples shown in this paper, we found no per-
ceivable difference when experimentally applying different
patch layouts. Of course, if filtering becomes excessive this no
longer holds true. If all spectral coefficients are set to zero, for
instance, then the patch surfaces will degenerate to the base
planes, clearly exhibiting a dependence on the patch layout and
the blending function.
Texture and Scalar Attributes.   In addition to the geomet-
ric information, our pipeline allows to process any attribute data
associated with the sample points, such as color or reflectance
properties. By including appropriate terms in Equation 1, these
attributes could also be used to control the patch layout scheme.

9 Conclusions & Future Work
We have introduced a spectral processing pipeline that extends
standard Fourier techniques to general point-sampled geometry.
Our framework supports sophisticated surface filtering and Fou-
rier-based resampling, is very efficient in both memory and
computation time and thus allows processing of very large geo-
metric models. 

Directions for future research include: global error analysis,
out-of-core implementation of the processing pipeline, geometry
compression, feature detection and extraction, and editing and
animation.
Acknowledgements.   Our thanks to Marc Levoy and the
Digital Michelangelo Project people for providing the data sets
of the David and St. Matthew statues. Also many thanks to
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Model Head St.Matthew David
#vertices
#patches

460,800
256

3,382,866
596

4,128,614
2,966

Computation time (sec.)
Clustering 1.7 13.5 17.2

Patch Merging 4.8 68.7 61.4

SDA 4.1 32.1 46.3

DFT 0.3 2.9 3.4

Total Preprocess 10.9 117.2 128.3
Spectral Analysis <0.1 0.2 0.2

Inverse DFT 0.3 2.9 3.4

Reconstruction
full model
subsampled to 10%

4.6
(1.2)

32.7
(10.4)

57.7
(15.1)

Total 15.8
(12.4)

153
(130.7)

189.6
(147)

Table 1: Timings for the different stages of the processing pipeline
(cf. Figure 1) on a 1.1GHz AMD Athlon with 1.5 GByte main
memory.
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Figure 15: Local smoothing (red circle) and enhancement (blue circle)
with adaptive patch layout.

Figure 13: Restoration of a blurred and noisy surface model (a), filtered with a Gaussian (b) and a feature-preserving Wiener filter (c). The under-
lying patch layout is shown in image (d).

Figure 16: Michelangelo’s David. Qsplat [18] renderings of the original model (a) (4,128,614 vertices) and the subsampled model (b) (287,165
vertices). Image (c) shows the sampling distribution of the latter, while image (d) illustrates the patch layout.

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 14: The subsampled head (a) and the zooms of the
belly button (b, original) and (c, subsampled) clearly show the
nonuniform sampling distributions with more samples con-
centrated at regions of high curvature. 

(a)

(b)

(c)
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Adaptively Sampled Distance Fields (ADFs)
Representing Shape for Computer Graphics

Sarah F. Frisken and Ronald N. Perry
Mitsubishi Electric Research Laboratories

Outline

• Overview of ADFs
• definition
• advantages
• instantiations

• Algorithms for octree-based ADFs
• specifics of octree-based ADFs
• generating, rendering, and triangulating ADFs

• Applications
• sculpting, scanning, meshing, modeling, machining ...
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Distance Fields

• A distance field is a scalar field that
• specifies the distance to a shape ...
• where the distance may be signed to distinguish

between the inside and outside of the shape

• Distance
• can be defined very generally (e.g., non-Euclidean)
• minimum Euclidean distance is used for most of this

presentation (with the exception of the volumetric molecules)

Distance Fields

2D shape with
sampled distances

to the surface

Regularly sampled
distance values

2D distance field

-65
20

-90
-130  -95   -62   -45    -31   -46   -57   -86   -129

-90   -49    -2       17    25   16     -3     -43   -90

-71     -5     30       -4   -38   -32     -3

-46      12    1      -50   -93     -3
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2D Distance Field

R shape Distance field of R

2D Distance Field

3D visualization of distance field of R
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Shape

• By shape we mean more than just the 3D
geometry of physical objects. Shape can have
arbitrary dimension and be derived from
simulated or measured data.

Color gamutColor printer

Conceptual Advantages of
Distance Fields

• Represent more than the surface
• object interior and the space in which the object sits

• Gains in efficiency and quality because
• distance fields vary “smoothly”
• are defined throughout space

• Gradient of the distance field yields
• surface normal for points on the surface
• direction to closest surface point for points off the

surface
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Practical Advantages of
Distance Fields

• Smooth surface reconstruction
• continuous reconstruction of a smooth field

• Trivial inside/outside and proximity testing
• using sign and magnitude of the distance field

• Fast and simple Boolean operations
• intersection: dist(A∩B) = min(dist(A), dist(B))
• union: dist(A∪B) = max(dist(A), dist(B))

• Fast and simple surface offsetting
• offset by d: dist(Aoffset) = dist(A) + d

• Enables geometric queries such as closest point
• using gradient and magnitude of the distance field

Sampled Distance Fields

• Similar to sampled images, insufficient
sampling of distance fields results in aliasing

• Because fine detail requires dense sampling,
excessive memory is required with regularly
sampled distance fields when any fine detail is
present
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Adaptively Sampled Distance Fields

• Detail-directed sampling
• high sampling rates only where needed

• Spatial data structure
• fast localization for efficient processing

• ADFs consist of
• adaptively sampled distance values …
• organized in a spatial data structure …
• with a method for reconstructing the distance field

from the sampled distance values

ADF Instantiations

• Spatial data structures
• octrees
• wavelets
• multi-resolution tetrahedral meshes …

• Reconstruction functions
• trilinear interpolation
• B-spline wavelet synthesis
• barycentric interpolation ...
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Quadtree
2D Spatial Data Structures − An Example

Wavelets
 2D Spatial Data Structures − An Example
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Multi-resolution Triangulation
 2D Spatial Data Structures − An Example

A Gallery of Examples − A Carved Vase

Illustrates smooth surface reconstruction, 
fine carving, and representation of algebraic 

complexity
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A Gallery of Examples − A Carved Slab

Illustrates sharp corners and precise cuts

A Gallery of Examples − A Volume
Rendered Molecule

Illustrates volume rendering of ADFs, semi-transparency, 
thick surfaces, and distance-based turbulence
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A Gallery of Examples − A 2D Crescent

ADFs consolidate the data needed to
represent complex objects

ADFs provide:

• spatial hierarchy

• distance field

• object surface

• object interior

• object exterior

• surface normal
(gradient at
surface)

• direction to closest
surface point
(gradient off
surface)

ADFs - A Unifying Representation

• Represent surfaces, volumes, and implicit
functions

• Represent sharp edges, organic surfaces, thin-
membranes, and semi-transparent substances

• Consolidate multiple structures for complex
objects (e.g., for collision detection, LOD construction, and dynamic meshing)

• Can store auxiliary data in cells or at cell vertices
(e.g., color and texture)
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Algorithms for Octree-based ADFs

• Specifics of octree-based ADFs
• Generating ADFs
• Rendering ADFs
• Triangulating ADFs

Octree-based ADFs

• A distance value is stored for each cell corner
in the octree

• Distances and gradients are estimated from
the stored values using trilinear reconstruction
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Reconstruction

A single trilinear field can represent highly curved surfaces 

Comparison of 3-color Quadtrees
and ADFs

23,573 cells (3-color) 1713 cells (ADF)
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Bottom-up Generation

Fully populate Recursively coalesce

Top-down Generation

Recursively subdivideInitialize root cell
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Tiled Generation

• Reduced memory requirements
• Better memory coherency
• Reduced computation

tiledGeneration(genParams, distanceFunc)
// cells: block of storage for cells
// dists: block of storage for final distance values
// tileVol: temporary volume for computed and
// reconstructed distance values
// bitFlagVol: volume of bit flags to indicate
// validity of distance values in tileVol
// cell: current candidate for tiled subdivision
// tileDepth: L (requires (2L+1)3 volume - the L+1
// level is used to compute cell errors for level L)
// maxADFLevel: preset max level of ADF (e.g., 12)

maxLevel = tileDepth
cell = getNextCell(cells)
initializeCell(cell, NULL) (i.e., root cell)

while (cell)
setAllBitFlagVolInvalid(bitFlagVol)
if (cell.level == maxLevel)
maxLevel = min(maxADFLevel, maxLevel + tileDepth)

recurSubdivToMaxLevel(cell,maxLevel,maxADFLevel)
addValidDistsToDistsArray(tileVol, dists)
cell = getNextCandidateForSubdiv(cells)

initializeCell(cell, parent)
initCellFields(cell, parent, bbox, level)
for (error = 0, pt = cell, face, and edge centers)
if (isBitFlagVolValidAtPt(pt))
comp = getTileComputedDistAtPt(pt)
recon = getTileReconstructedDistAtPt(pt)

else
comp = computeDistAtPt(pt)
recon = reconstructDistAtPt(cell, pt)
setBitFlagVolValidAtPt(pt)

error = max(error, abs(comp - recon))
setCellError(error)

recurSubdivToMaxLevel(cell, maxLevel, maxADFLevel)
// Trivially exclude INTERIOR and EXTERIOR cells
// from further subdivision
pt = getCellCenter(cell)
if (abs(getTileComputedDistAtPt(pt)) >

getCellHalfDiagonal(cell))
// cell.type is INTERIOR or EXTERIOR
setCellTypeFromCellDistValues(cell)
return

// Stop subdividing when error criterion is met
if (cell.error < maxError)
// cell.type is INTERIOR, EXTERIOR, or BOUNDARY
setCellTypeFromCellDistValues(cell)
return

// Stop subdividing when maxLevel is reached
if (cell.level >= maxLevel)
// cell.type is INTERIOR, EXTERIOR, or BOUNDARY
setCellTypeFromCellDistValues(cell)
if (cell.level < maxADFLevel)
// Tag cell as candidate for next layer
setCandidateForSubdiv(cell)

return

// Recursively subdivide all children
for (each of the cell’s 8 children)
child = getNextCell(cells)
initializeCell(child, cell)
recurSubdivToMaxLevel(child, maxLevel, maxADFLevel)

// cell.type is INTERIOR, EXTERIOR, or BOUNDARY
setCellTypeFromChildrenCellTypes(cell)

// Coalesce INTERIOR and EXTERIOR cells
if (cell.type != BOUNDARY) coalesceCell(cell)

Tiled Generation Pseudocode
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Tiled Generation − Overview

• Recursively subdivide root cell to a level L

• Cells at level L requiring further subdivision are
appended to a list of candidate cells, C-list

• These candidate cells are recursively subdivided
between levels L and 2L, where new candidate
cells are produced and appended to C-list

• Repeat layered production of candidate cells (2L
to 3L, etc.) until C-list is empty

Tiled Generation − Candidate Cells

• A cell becomes a candidate for further
subdivision when all of the following are true:
• it is a leaf cell of level L, or 2L, or 3L, etc.
• it can not be trivially determined to be an interior or

exterior cell
• it does not satisfy a specified error criterion
• its level is below a specified maximum ADF level
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Tests for Candidate Cells

(1) all di have same sign
(2) all || di ||  > ! cell diagonal

Test to trivially determine if
a cell is interior or exterior

19 test points to
determine cell error

Tiled Generation − Tiling

• For each candidate cell, computed and
reconstructed distances are produced only as
needed during subdivision

• These distances are stored in a tile, a regularly
sampled volume

• The tile resides in cache memory and its size
determines L

• A volume of bit flags keeps track of valid
distances in the tile to ensure that distances are
computed only once
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Tiled Generation − Tiling

• For coherency, cells and final distances are
stored in two separate contiguous memory
blocks

• After a candidate cell has been processed, valid
distances in the tile are appended to the block of
final distances

• Special care is taken at tile boundaries to ensure
that distances are never duplicated for
neighboring cells

Tiled Generation − Cache Efficiency

• Tile sizes can be tuned to the CPU cache
architecture

• For current Pentium systems, a tile size of 163

has worked most effectively

• Using a separate bit flag volume further
enhances cache effectiveness and provides fast
invalidation of tile distances prior to processing
each candidate cell
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Rendering

• Ray casting
• Adaptive ray casting
• Point-based rendering
• Triangles

Ray Casting
Ray-surface Intersection with a Cubic Solver

• See Parker et al., ”Interactive Ray Tracing for Volume Visualization”
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Ray Casting
Ray-surface Intersection with a Linear Solver

• Assume that distances vary linearly along the ray
• Determine the zero-crossing within the cell given distances at the

points where the ray enters and exits the cell

Ray Casting
Crackless Surface Rendering with the Linear Solver

• Set the distance at the entry point of a cell equal to the distance
computed for the exit point of the previous cell
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Ray Casting
Volume Rendering

• Colors and opacities are accumulated at equally spaced samples along
each ray

Adaptive Ray Casting

• The image region to be rendered is divided
into a hierarchy of image tiles

• The subdivision of each tile is guided by a
perceptually-based predicate

• Pixels within image tiles of size greater than
1x1 are bilinearly interpolated to produce the
image

• Rays are cast into the ADF at tile corners and
intersected with the surface using the linear
solver
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Adaptive Ray Casting

• The predicate individually weights the contrast
in the red, green, and blue channels and the
variance in depth-from-camera across the tile
• See Mitchell , SIGGRAPH’87, and Bolin and Meyer, SIGGRAPH’98

• Results in a typical 6:1 reduction in rendering
time over non-adaptive ray casting

Adaptive Ray Casting

Adaptively ray cast ADF Rays cast to render part
of the left image



22

Point-based Rendering

• Determine the number of points to generate in
each boundary leaf cell
• Compute an estimate of the object’s surface area

within each boundary leaf cell areaCell and the total
estimated surface area of the object,
areaObject = Σ=areaCell

• Set the number of points in each cell nPtsCell
proportional to areaCell / areaObject

• For each boundary leaf cell in the ADF
• Generate nPtsCell random points in the cell
• Move each point to the object’s surface using the

distance and gradient at the point

Point-based Rendering
Pseudocode

generatePoints(adf, points, nPts, maxPtsToGen)
// Estimate object’s surface area within each boundary leaf
// cell and the total object’s surface area
for (areaObject = 0, level = 0 to maxADFLevel)
nCellsAtLevel = getNumBoundaryLeafCellsAtLevel(adf, level)
areaCell[level] = sqr(cellSize(level))
areaObject += nCellsAtLevel * areaCell[level]

// nPtsCell is proportional to areaCell / areaObject
for (level = 0 to maxADFLevel)
nPtsAtLevel[level] = maxPtsToGen * areaCell[level] / areaObject

// For each boundary leaf cell, generate cell points
// and move each point to the surface
for (nPts = 0, cell = each boundary leaf cell of adf)
nPtsCell = nPtsAtLevel[cell.level]
while (nPtsCell--)
pt = generateRandomPositionInCell(cell)
d = reconstructDistAtPt(cell, pt)
n = reconstructNormalizedGradtAtPt(cell, pt)
pt += d * n
n = reconstructNormalizedGradtAtPt(cell, pt)
setPointAttributes(pt, n, points, nPts++)
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Point-based Rendering

An ADF
rendered
as points

at two
different

scales

Triangle Rendering

• ADFs can also be rendered by triangulating the
surface and using graphics hardware to
rasterize the triangles

• Triangulation is fast
• 200,000 triangles in 0.37 seconds, Pentium IV
• 2,000 triangles in < 0.01 seconds

• The triangulation produces models that are
orientable and closed
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Triangulation

• Seed − Each boundary leaf cell of the ADF is
assigned a vertex that is initially placed at the
cell’s center

• Join − Vertices of neighboring cells are joined
to form triangles

• Relax − Vertices are moved to the surface
using the distance field

• Improve − Vertices are moved over the
surface towards their average neighbors'
position to improve triangle quality

Triangulation

• Vertices are joined to form triangles using the
following observations
• A triangle joins the vertices of 3 neighboring cells

that share a common edge (hence triangles are
associated with cell edges)

• A triangle is associated with an edge only if that
edge has a zero crossing of the distance field

• The orientation of the triangle can be derived from
the orientation of the edge it crosses

• In order to avoid making redundant triangles, we
consider 6 of the 12 possible edges for each cell
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Triangulation − Surface Cracks

As with other algorithms,
this type of crack occurs
very rarely but we can
prevent it with a simple
pre-conditioning step

Most triangulation algorithms
for adaptive grids suffer from
this type of crack; our
algorithm does not

Triangulation − Pre-conditioning

• In 3D, the pre-conditioning step compares the
number of zero-crossings of the iso-surface for
each face of each boundary leaf cell to the
total number of zero-crossings for faces of the
cell's face-adjacent neighbors that are shared
with the cell

• When the number of zero-crossings are not
equal for any face, the cell is subdivided using
distance values from its face-adjacent
neighbors until the number of zero-crossings
match
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triangulateADF(adf)

// vertices: storage for vertices

// triangles: storage for triangles

// Initialize triangles vertices at cell centers

// and associate each vertex with its cell

for (cell = each boundary leaf cell of adf)

v = getNextVertex(vertices)

associateVertexWithCell(cell, v)

v.position = getCellCenter(cell)

// Make triangles. Each cell edge joins two cell

// faces face1 and face2 which are ordered to ensure

// a consistent triangle orientation (see EdgeFace

// table below). For a given cell edge and face,

// getFaceNeighborVertex returns either the vertex of

// the cell’s face-adjacent neighbor if the

// face-adjacent neighbor is the same size or larger

// than the cell, OR, the vertex of the unique child

// cell (uniqueness is guaranteed by a

// pre-conditioning step) of the face-adjacent

// neighbor that is both adjacent to the face and

// has a zero-crossing on the edge

for (cell = each boundary leaf cell of adf)

for (edge = cell’s up-right, down-left, up-front,

down-back, front-right, and back-left edges)

if (surfaceCrossesEdge(edge))

face1 = EdgeFace[edge].face1

face2 = EdgeFace[edge].face2

v0 = getCellsAssociatedVertex(cell)

v1 = getFaceNeighborVertex(face1, edge)

v2 = getFaceNeighborVertex(face2, edge)

t = getNextTriangle(triangles)

if (edgeOrientation(edge) > 0)

t.v0 = v0, t.v1 = v1, t.v2 = v2

else

t.v0 = v0, t.v1 = v2, t.v2 = v1

// Relax each vertex to the surface and then along

// the tangent plane at the relaxed position towards

// the average neighbor position

for (each vertex)

v = getVertexPosition(vertex)

u = getAveragePositionOfNeighborVertices(vertex)

cell = getVertexCell(vertex)

d = reconstructDistAtPt(cell, v)

n = reconstructNormalizedGradtAtPt(cell, v)

v += d * n

v += (u - v) - n · (u - v)

// ------------------------------------------

// EdgeFace table:

// edge face1 face2

// ---------- ----- -----

// up-right up right

// down-left down left

// up-front up front

// down-back down back

// front-right front right

// back-left back left

Triangulation − Level-of-Detail

• The octree is traversed and vertices are
seeded into boundary cells whose maximum
error satisfies a user-specified threshold

• Cells below these cells in the hierarchy are
ignored

• The error threshold can be varied continuously
enabling fine control over the number of
triangles generated

• Time to produce an LOD model is proportional
to the number of vertices in the output mesh
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Triangulation − Level-of-Detail

Applications

• Sculpting
• 3D scanning
• Dynamic meshing
• Physically-based modeling
• Color management
• Volumetric effects
• Machining



28

Sculpting
“Kizamu: A System for Sculpting Digital Characters”

• ADFs can represent both
smooth surfaces and
sharp corners without
excessive memory

• Carving is direct,
intuitive, and fast

• Does not require control
point manipulation or
trimming

• The distance field can be
used to position and
orient the sculpting tool
or to constrain carving

3D Scanning

• Use of distance fields
provides more robust,
water-tight surfaces

• ADFs result in significant
savings in memory and
distance computations

• Resultant models can be
directly sculpted to
correct the scanned data

• Fast new triangulation
method produces optimal
triangle meshes from the
ADF
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Dynamic Meshing
Level-of-Detail and View Dependent Triangulation

• ADF octree provides
hierarchical structure for
generating LOD models

• View-dependent meshing
uses ADF hierarchy, cell
size, and cell gradients

• ADF cell error enables
fine control over triangle
count in LOD meshes

• Real-time ADF
triangulation algorithm
produces meshes that
are orientable and closed

Physically-based Modeling

• ADFs provide a compact
representation of complex
surfaces

• ADF spatial hierarchy and
trivial inside/outside tests
enable fast collision
detection

• Distance field provides
penetration depths for
computing impact forces

• Distance field allows
computation of material-
dependent contact
deformation



30

Color Management
 Representing Color Gamuts

• ADF distance field
enables a fast, simple
out-of-gamut test

• ADFs provide a compact
representation of
complex gamut shapes

• Gamut test is very
accurate near the gamut
surface

• Distance and gradient
indicate how far out of
gamut a color lies and
the direction to the
nearest in-gamut color

Volumetric Effects

• Offset surfaces can be
used to render thick,
translucent surfaces

• Volume texture can be
added within the thick
surface

• Distance values away
from the surface can be
used for special effects
(e.g., turbulent haze)

• Octree and distance field
allow space-leaping and
other methods to speed
up volume rendering
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Machining

• ADFs represent surfaces,
object interiors, and the
material to be removed

• ADFs represent smooth
surfaces and very fine
detail

• Trivial inside/outside and
proximity tests are useful
for designing tool paths

• Gradients can be used to
select tool orientation

• Offset surfaces can be
used for rough cutting in
coarse-to-fine milling

For More Information
At Siggraph 2001

• Paper presentation:
• “Kizamu: A System for Sculpting Digital Characters”,

Wednesday, 15 August, 10:30 am

• Sketches:
• “Dynamic Meshing Using Adaptively Sampled Distance

Fields”, Wednesday, 15 August, 4:30 pm
• “A Computationally Efficient Framework for Modeling Soft

Body Impact”, Thursday, 18 August, 8:30 am
• “Computing 3D Geometry Directly from Range Images”,

Friday, 17 August, 2:20 pm
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For More Information
In Your Course Notes

• A nearly final version of the Kizamu paper, SIGGRAPH 2001 and MERL
Technical Report TR2001-08

• “A New Representation for Device Color Gamuts”, MERL Technical Report
TR2001-09

• “Computing 3D Geometry Directly from Range Images”, SIGGRAPH 2001
Technical Sketch and MERL Technical Report TR2001-10

• “A Computationally Efficient Framework for Modeling Soft Body Impact”,
SIGGRAPH 2001 Technical Sketch and MERL Technical Report TR2001-11

• “A New Framework For Non-Photorealistic Rendering”, MERL Technical
Report TR2001-12

• “Dynamic Meshing Using Adaptively Sampled Distance Fields”, SIGGRAPH
2001 Technical Sketch and MERL Technical Report TR2001-13

• “Adaptively Sampled Distance Fields: A General Representation of Shape
for Computer Graphics”, SIGGRAPH 2000 and MERL Technical Report
TR2000-15

• “Using Distance Maps for Accurate Surface Representation in Sampled
Volumes”, IEEE VolVis Symp. 1998 and MERL Technical Report TR99-25

The End
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Image-Based
Modeling and Rendering:
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Goals of IBRGoals of IBR

To infer new images from old ones… To infer new images from old ones… 



Different Schools of ThoughtDifferent Schools of Thought
Images with structureImages with structure

• Prerendering analysis

• Small runtime footprint

• Active image sensors

• Backward compatible

Images without structureImages without structure
• Can use raw images

• Minimal analysis and assumptions

• Large storage requirements

• Incompatible/Radical

Consider images as a collection of rays,Consider images as a collection of rays,

… rather than a collection of pixels.… rather than a collection of pixels.

IBR PrinciplesIBR Principles



The Plenoptic FunctionThe Plenoptic Function
Given enough sample rays, can we interpolate nearby ones?Given enough sample rays, can we interpolate nearby ones?

IBR is a different approach to computer graphics.IBR is a different approach to computer graphics.

Where to Begin?Where to Begin?
Next Generation CamerasNext Generation Cameras

• Known Internal calibration

• Know where they are

• Photometric

• High-dynamic range

Image Courtesy of MIT City Scanning Project, 
Seth Teller, Satyan Coorg, JP Mellor, George Chou,

Doug De Couto, Neel Master, Barb Cutler,
Eric Amram, Mike Bosse, Matt Antone,

Stefano Totaro, and Manish Jethwa.



Warping Points with DepthWarping Points with Depth
AdvantagesAdvantages

• Simple warping transformation

• Small footprint in memory

• Occlusion compatible rendering order

• Compatible with traditional graphics methods

DisadvantagesDisadvantages
• View-independent shading

• Reconstruction errors

• Disocclusion

Approximate GeometryApproximate Geometry
Many images with an approximate modelMany images with an approximate model

• Façade

• View-dependent texture mapping

• Image-based visual hulls

Approximate shape for interApproximate shape for inter--object interactionsobject interactions
• Occlusions

• Walk-around

Textures for detailTextures for detail
• View-dependent shading

• Small geometric features



Acquiring Depth ImagesAcquiring Depth Images
Economical laser scannersEconomical laser scanners

Images and video courtesy of the University of North Carolina at Chapel Hill,
“Office of the Future” Project, Wei-Chao Chen, Henry Fuchs, Lars Nyland,

Herman Towles and Greg Welch.

Warping ProspectsWarping Prospects

ModelingModeling
• Active sensing

• Passive sensing

• Dynamic scenes

RenderingRendering
• View-dependent shading

• Disocclusion (LDIs, MCOPs)

• Reconstruction

Hardware AccelerationHardware Acceleration



What is a Visual Hull?What is a Visual Hull?

Why use a Visual Hull?Why use a Visual Hull?

They rely on the simplest CV algorithmsThey rely on the simplest CV algorithms

They can be computed robustlyThey can be computed robustly

They can be computed efficientlyThey can be computed efficiently

- =

background background 
+ + 

foregroundforeground

backgroundbackground foreground foreground 



AcquisitionAcquisition
Several cameras with overlapping viewsSeveral cameras with overlapping views

• Geometric & Photometric calibration

• Synchronization

Image-based Visual HullsImage-based Visual Hulls

VolumeVolume--likelike

SelfSelf--consistentconsistent

DiscreteDiscrete--continuouscontinuous



Reference 1

Reference 2
Desired

Image-Based ComputationImage-Based Computation

ObservationObservation

Incremental computation along scanlinesIncremental computation along scanlines

Desired

Reference



Step 1: BinningStep 1: Binning

Epipole

Bin 5

Bin 1

Bin 2

Bin 3

Bin 4

Sort silhouette edges into binsSort silhouette edges into bins

Epipole

Bin 5

Step 2: ScanningStep 2: Scanning



IBVH AdvantagesIBVH Advantages

• Approximately constant computation
per pixel per camera

• Parallelizes

• Consistent with 
input silhouettes

Shading AlgorithmShading Algorithm
Use view dependent texture mappingUse view dependent texture mapping

at eachat each
IBVHIBVH
samplesample

Problem:Problem:
VISIBILITYVISIBILITY



IBVH Visibility AlgorithmIBVH Visibility Algorithm

Determining Visibility in 2DDetermining Visibility in 2D

Desired viewReference view

Coverage MaskCoverage MaskCoverage MaskCoverage Mask



Shading Visual HullsShading Visual Hulls
ViewView--dependent illuminationdependent illumination

VisibilityVisibility

IBVH ResultsIBVH Results



An IBVH-Based 3D ScannerAn IBVH-Based 3D Scanner

Simultaneous capture Simultaneous capture 
of IBVH shape and of IBVH shape and 
reflected radiancereflected radiance

LowLow--costcost

Fast acquisitionFast acquisition

Rotating Platform

Cameras

Overhead Lights

Ba
ck

 L
igh

t

Active Back LightingActive Back Lighting

Provides improved segmentationProvides improved segmentation



Actual SystemActual System

IBVH ScansIBVH Scans
ImageImage--based visual hulls built from 108 (3 x 36) imagesbased visual hulls built from 108 (3 x 36) images



Dealing with ConcavitiesDealing with Concavities

Concave surface regions never appear on a silhouette.Concave surface regions never appear on a silhouette.
Thus, an IBVH can not capture such shapes…Thus, an IBVH can not capture such shapes…

View Dependent ShadingView Dependent Shading
However, the captured images can be used as a surface light However, the captured images can be used as a surface light 

field defined over the visual hull. Thus, providing accurate field defined over the visual hull. Thus, providing accurate 
renderings despite the geometric inaccuracies.renderings despite the geometric inaccuracies.



IBVH Object ModelsIBVH Object Models

We have captured 100’sWe have captured 100’s
of models with ourof models with our
IBVHIBVH--based 3Dbased 3D
scanning system.scanning system.
Including, highlyIncluding, highly
specularspecular, fuzzy, and, fuzzy, and
translucent objects.translucent objects.

How many Images?How many Images?
The shape estimate of the visual hull converges rapidly. The shape estimate of the visual hull converges rapidly. 

Subsequent silhouettes provide only minor improvements.Subsequent silhouettes provide only minor improvements.
Volume of Gargoyle Model
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How many Images?How many Images?

Adding more images dramatically improves the rendering Adding more images dramatically improves the rendering 
quality of highly quality of highly specularspecular and transparent surfaces, as and transparent surfaces, as 
well as improving the rendering of concavities.well as improving the rendering of concavities.

Visual Hull ProspectsVisual Hull Prospects
CaptureCapture

• Passive - multiple synchronized calibrated cameras

• Limited working volume

• Approximate model (even in the limit)

RenderingRendering
• Fast - can be computed at a constant cost/pixel

• Limited view-dependent shading

• Texture registration on approximate geometry 

AccelerationAcceleration
• Scalable to a large number of cameras



Structured Light fieldsStructured Light fields
Focal planes as approximate structureFocal planes as approximate structure

Interpolating RaysInterpolating Rays
Less structure / More imagesLess structure / More images

Structure “onStructure “on--thethe--fly”fly”
Dynamic 

Reparameterization



Light Field AcquisitionLight Field Acquisition
Motion PlatformsMotion Platforms

• Precise positioning

• Calibrated digital camera

• Expensive (> $10K)

• Very Slow (~20 mins)

Light field camerasLight field cameras
• Less precise

• Calibration per aperture

• Inexpensive (~ $100)

• Slow (> 3 mins)

Focal Planes as StructureFocal Planes as Structure
Structure is discovered by user interaction rather than Structure is discovered by user interaction rather than 

recovered by computer visionrecovered by computer vision

Intuitive “cameraIntuitive “camera--like” interfacelike” interface

Reconstruction (Interpolation) controlled by variable focus Reconstruction (Interpolation) controlled by variable focus 
and variable apertureand variable aperture



Dynamic ReparameterizationDynamic Reparameterization

Light fields with variable focal planes and aperturesLight fields with variable focal planes and apertures

Prospects of Light FieldsProspects of Light Fields
ModelingModeling

• Many images/cameras (expensive setup)

• Minimal assumptions about the scene

• Compression = Structure?

RenderingRendering
• Supports view-dependent shading

• Very fast - large memory requirements

• Less structure - more aliasing

Hardware AccelerationHardware Acceleration
• Can use existing texture-mapping H/W



Unstructured Light FieldsUnstructured Light Fields

Reference images along unconstrained camera pathsReference images along unconstrained camera paths

Acquiring Unstructured LFsAcquiring Unstructured LFs

Can use a wide range of source imagesCan use a wide range of source images
• Images from regular arrays or panoramas

• Tracked or calibrated cameras

• Hand-held camcorder

Position/Pose recoveryPosition/Pose recovery
• Post-process source images by tracking features

• Photometric equalization



Rendering Unstructured LFs Rendering Unstructured LFs 
ViewView--dependent parameterization via dynamic triangulationdependent parameterization via dynamic triangulation

H/W texture mapping H/W texture mapping 

ResultsResults
Static scenesStatic scenes

Dynamic scenesDynamic scenes



Unstructured LF ProspectsUnstructured LF Prospects
ModelingModeling

• Wide range of source materials

• Camera tracking is essential

RenderingRendering
• Supports view-dependent shading

• Very very fast - large memory requirements

• Many artifacts to overcome (scattered data reconstruction)

Hardware AccelerationHardware Acceleration
• Can use existing texture-mapping H/W

ConclusionsConclusions

•Representation Trade-offs

•Explicit (Model’s + Texture)

•Implicit (Images alone)

•How much Shape?

•As much as we can get?

•As much as we can get by with?
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Abstract 
In this paper, we describe an efficient image-based approach to 
computing and shading visual hulls from silhouette image data. 
Our algorithm takes advantage of epipolar geometry and incre-
mental computation to achieve a constant rendering cost per 
rendered pixel. It does not suffer from the computation complex-
ity, limited resolution, or quantization artifacts of previous 
volumetric approaches. We demonstrate the use of this algorithm 
in a real-time virtualized reality application running off a small 
number of video streams. 
Keywords: Computer Vision, Image-Based Rendering, Construc-
tive Solid Geometry, Misc. Rendering Algorithms. 

1 Introduction 
Visualizing and navigating within virtual environments composed 
of both real and synthetic objects has been a long-standing goal of 
computer graphics. The term “Virtualized Reality™”, as popular-
ized by Kanade [23], describes a setting where a real-world scene 
is “captured” by a collection of cameras and then viewed through 
a virtual camera, as if the scene was a synthetic computer graphics 
environment. In practice, this goal has been difficult to achieve. 
Previous attempts have employed a wide range of computer vision 
algorithms to extract an explicit geometric model of the desired 
scene.  

Unfortunately, many computer vision algorithms (e.g. stereo 
vision, optical flow, and shape from shading) are too slow for 
real-time use. Consequently, most virtualized reality systems em-
ploy off-line post-processing of acquired video sequences. 
Furthermore, many computer vision algorithms make unrealistic 
simplifying assumptions (e.g. all surfaces are diffuse) or impose 
impractical restrictions (e.g. objects must have sufficient non-
periodic textures) for robust operation. We present a new algo-
rithm for synthesizing virtual renderings of real-world scenes in 
real time. Not only is our technique fast, it also makes few simpli-
fying assumptions and has few restrictions. 
*(wojciech | cbuehler | mcmillan)@graphics.lcs.mit.edu 
†sjg@cs.harvard.edu 
‡raskar@cs.unc.edu 

 
Figure 1 - The intersection of silhouette cones defines an approxi-
mate geometric representation of an object called the visual hull. A 
visual hull has several desirable properties: it contains the actual 
object, and it has consistent silhouettes. 

Our algorithm is based on an approximate geometric repre-
sentation of the depicted scene known as the visual hull (see 
Figure 1). A visual hull is constructed by using the visible silhou-
ette information from a series of reference images to determine a 
conservative shell that progressively encloses the actual object. 
Based on the principle of calculatus eliminatus [28], the visual 
hull in some sense carves away regions of space where the object 
“is not”. 

The visual hull representation can be constructed by a series 
of 3D constructive solid geometry (CSG) intersections. Previous 
robust implementations of this algorithm have used fully enumer-
ated volumetric representations or octrees. These methods 
typically have large memory requirements and thus, tend to be 
restricted to low-resolution representations.  

In this paper, we show that one can efficiently render the ex-
act visual hull without constructing an auxiliary geometric or 
volumetric representation. The algorithm we describe is “image 
based” in that all steps of the rendering process are computed in 
“image space” coordinates of the reference images.  

We also use the reference images as textures when shading 
the visual hull. To determine reference images that can be used, 
we compute which reference cameras have an unoccluded view of 
each point on the visual hull. We present an image-based visibility 
algorithm based on epipolar geometry and McMillan's occlusion 
compatible ordering [18] that allows us to shade the visual hull in 
roughly constant time per output pixel. 

Using our image-based visual hull (IBVH) algorithm, we 
have created a system that processes live video streams and ren-
ders the observed scene from a virtual camera's viewpoint in real 
time. The resulting representation can also be combined with 
traditional computer graphics objects. 

 



2 Background and Previous Work 
Kanade's virtualized reality system [20] [23] [13] is perhaps clos-
est in spirit to the rendering system that we envision. Their initial 
implementations have used a collection of cameras in conjunction 
with multi-baseline stereo techniques to extract models of dy-
namic scenes. These methods require significant off-line 
processing, but they are exploring special-purpose hardware for 
this task. Recently, they have begun exploring volume-carving 
methods, which are closer to the approach that we use [26] [30]. 

Pollard’s and Hayes’ [21] immersive video objects allow 
rendering of real-time scenes by morphing live video streams to 
simulate three-dimensional camera motion. Their representation 
also uses silhouettes, but in a different manner. They match sil-
houette edges across pairs of views, and use these 
correspondences to compute morphs to novel views. This ap-
proach has some limitations, since silhouette edges are generally 
not consistent between views. 

Visual Hull. Many researchers have used silhouette infor-
mation to distinguish regions of 3D space where an object is and 
is not present [22] [8] [19]. The ultimate result of this carving is a 
shape called the object’s visual hull [14]. A visual hull always 
contains the object. Moreover, it is an equal or tighter fit than the 
object’s convex hull. Our algorithm computes a view-dependent, 
sampled version of an object’s visual hull each rendered frame. 

Suppose that some original 3D object is viewed from a set of 
reference views R. Each reference view r has the silhouette sr with 
interior pixels covered by the object. For view r one creates the 
cone-like volume vhr defined by all the rays starting at the image's 
point of view pr and passing through these interior points on its 
image plane. It is guaranteed that the actual object must be con-
tained in vhr. This statement is true for all r; thus, the object must 
be contained in the volume vhR=∩r∈∈∈∈Rvhr. As the size of R goes to 
infinity, and includes all possible views, vhR converges to an ap-
proximate shape known as the visual hull vh∞ of the original 
geometry. The visual hull is not guaranteed to be the same as the 
original object since concave surface regions can never be distin-
guished using silhouette information alone. 

In practice, one must construct approximate visual hulls us-
ing only a finite number of views. Given the set of views R, the 
approximation vhR is the best conservative geometric description 
that one can achieve based on silhouette information alone (see 
Figure 1). If a conservative estimate is not required, then alterna-
tive representations are achievable by fitting higher order surface 
approximations to the observed data [2]. 

Volume Carving. Computing high-resolution visual hulls 
can be a tricky matter. The intersection of the volumes vhr re-
quires some form of CSG. If the silhouettes are described with a 
polygonal mesh, then the CSG can be done using polyhedral 
CSG, but this is very hard to do in a robust manner. 

A more common method used to convert silhouette contours 
into visual hulls is volume carving [22] [8] [29] [19] [5] [27]. 
This method removes unoccupied regions from an explicit volu-
metric representation. All voxels falling outside of the projected 
silhouette cone of a given view are eliminated from the volume. 
This process is repeated for each reference image. The resulting 
volume is a quantized representation of the visual hull according 
to the given volumetric grid and the reference image set. A major 
advantage of our view-dependent method is that it minimizes 
artifacts resulting from this quantization. 

CSG Rendering. A number of algorithms have been de-
veloped for the fast rendering of CSG models, but most are ill 
suited for our task. The algorithm described by Rappoport [24], 
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Figure 2 – Computing the IBVH involves three steps. First, the 
desired ray is projected onto a reference image. Next, the intervals 
where the projected ray crosses the silhouette are determined. 
Finally, these intervals are lifted back onto the desired ray where 
they can be intersected with intervals from other reference images. 

requires that each solid be first decomposed to a union of convex 
primitives. This decomposition can prove expensive for compli-
cated silhouettes. Similarly, the algorithm described in [11] 
requires a rendering pass for each layer of depth complexity. Our 
method does not require preprocessing the silhouette cones. In 
fact, there is no explicit data structure used to represent the sil-
houette volumes other than the reference images. 

Using ray tracing, one can render an object defined by a tree 
of CSG operations without explicitly computing the resulting 
solid [25]. This is done by considering each ray independently 
and computing the interval along the ray occupied by each object. 
The CSG operations can then be applied in 1D over the sets of 
intervals. This approach requires computing a 3D ray-solid inter-
section. In our system, the solids in question are a special class of 
cone-like shapes with a constant cross section in projection. This 
special form allows us to compute the equivalent of 3D ray inter-
sections in 2D using the reference images. 

Image-Based Rendering. Many different image-based 
rendering techniques have been proposed in recent years 
[3] [4] [15] [6] [12]. One advantage of image-based rendering 
techniques is their stunning realism, which is largely derived from 
the acquired images they use. However, a common limitation of 
these methods is an inability to model dynamic scenes. This is 
mainly due to data acquisition difficulties and preprocessing re-
quirements. 

3 Visual-Hull Computation 
Our approach to computing the visual hull has two distinct char-
acteristics: it is computed in the image space of the reference 
images and the resulting representation is viewpoint dependent. 
The advantage of performing geometric computations in image 
space is that it eliminates the resampling and quantization artifacts 
that plague volumetric approaches. We limit our sampling to the 
pixels of the desired image, resulting in a view-dependent visual-
hull representation. In fact, our IBVH representation is equivalent 
to computing exact 3D silhouette cone intersections and rendering 
the result with traditional rendering methods. 

Our technique for computing the visual hull is analogous to 
finding CSG intersections using a ray-casting approach [25]. 
Given a desired view, we compute each viewing ray's intersection 
with the visual hull.  Since computing a visual hull involves only 



intersection operations, we can perform the CSG calculations in 
any order. Furthermore, in the visual hull context, every CSG 
primitive is a generalized cone (a projective extrusion of a 2D 
image silhouette). Because the cone has a fixed (scaled) cross 
section, the 3D ray intersections can be reduced to cheaper 2D ray 
intersections. As shown in Figure 2 we perform the following 
steps: 1) We project a 3D viewing ray into a reference image. 2) 
We perform the 1D intersection of the projected ray with the 2D 
silhouette. These 1D intersections result in a list of intervals along 
the ray that are interior to the cone's cross-section. 3) Each 1D 
interval is then lifted back into 3D using a simple projective map-
ping, and then intersected with the results of the ray-cone 
intersections from other reference images. A naïve algorithm for 
computing these IBVH ray intersections follows: 
 
IBVHisect (intervalImage &d, refImList R){ 
  for each referenceImage r in R  
    computeSilhouetteEdges (r) 
  for each pixel p in desiredImage d do 
    p.intervals =  {0..inf} 
  for each referenceImage r in R  
    for each scanline s in d 
      for each pixel p in s  
        ray3D  ry3 = compute3Dray(p,d.camInfo) 
        lineSegment2D l2 = project3Dray(ry3,r.camInfo) 
        intervals int2D = calcIntervals(l2,r.silEdges) 
        intervals int3D = liftIntervals(int2D,r.camInfo,ry3) 
        p.intervals = p.intervals ISECT int3D       
} 
 

To analyze the efficiency of this algorithm, let n be the num-
ber of pixels in a scanline. The number of pixels in the image d is 
O(n2). Let k be the number of reference images. Then, the above 
algorithm has an asymptotic running time O(ikn2), where i is the 
time complexity of the calcintervals routine. If we test for the 
intersection of each projected ray with each of the e edges of the 
silhouette, the running time of calcintervals is O(e). For large 
classes of scenes, we can describe the average number of edges on 
the boundary of a silhouette to be O(ln) where l is the average 
number of times that a projected ray intersects the silhouette1. 
Thus, the running time of IBVHisect to compute all of the 2D 
intersections for a desired view is O(lkn3). 

The performance of this naïve algorithm can be improved by 
taking advantage of incremental computations that are enabled by 
the epipolar geometry relating the reference and desired images. 
These improvements will allow us to reduce the amortized cost of 
1D ray intersections to O(l) per desired pixel, resulting in an im-
plementation of IBVHisect that takes O(lkn2).  

Given two camera views, a reference view r and a desired 
view d, we consider the set of planes that share the line connect-
ing the cameras’ centers. These planes are called epipolar planes. 
Each epipolar plane projects to a line in each of the two images, 
called an epipolar line. In each image, all such lines intersect at a 
common point, called the epipole, which is the projection of one 
of the camera's center onto the other camera's view plane [9]. 

As a scanline of the desired view is traversed, each pixel pro-
jects to an epipolar line segment in r. These line segments 
emanates from the epipole edr, the image of d's center of projec-
tion onto r's image plane (see Figure 3), and trace out a “pencil” 
of epipolar lines in r. The slopes of these epipolar line segments 
will either increase or decrease monotonically depending on the 
direction of traversal (Green arc in Figure 3). We take advantage 
of this monotonicity to compute silhouette intersections for the 
whole scanline incrementally. 

                                                                 
1 We assume reference images also have O(n2) pixels. 
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Figure 3 – The pixels of a scanline in the desired image trace out 
a pencil of line segments in the reference image. An ordered tra-
versal of the scanline will sweep out these segments such that their 
angle about the epipole varies monotonically. 

The silhouette contour of each reference view is represented 
as a list of edges enclosing the silhouette’s boundary pixels. These 
edges are generated using a 2D variant of the marching cubes 
approach [16]. Next, we sort the O(nl) contour vertices in increas-
ing order by the slope of the line connecting each vertex to the 
epipole. These sorted vertex slopes are divided into O(nl) bins. 
Bin Bi has an angular extent spanning between the slopes of the 
ith and i+1st slope in the sorted list. In each bin Bi we place all 
edges that are intersected by epipolar lines with an angle falling 
within the bin’s extent. During IBVHisect as we traverse the 
pixels along a scanline in the desired view, the projected corre-
sponding view rays fan across the epipolar pencil in the reference 
view with increasing slope. Concurrently, we scan through the list 
of bins. The appropriate bin for each epipolar line is found and it 
is intersected with the edges in that bin. This procedure is analo-
gous to merging two sorted lists, which can be done in a time 
proportional to the length of the lists (O(nl) in our case). 

For each scanline in the desired image we evaluate n viewing 
rays. For each viewing ray we compute its intersection with edges 
in a single bin. Each bin contains on average O(l) silhouette 
edges. Thus, this step takes O(l) time per ray. Simultaneously we 
traverse the sorted set of O(nl) bins as we traverse the scanline. 
Therefore, one scanline is computed in O(nl) time. Over n scanli-
nes in k reference images2, this gives a running time of O(lkn2). 
Pseudocode for the improved algorithm follows. 
 
IBVHisect (intervalImage &d, refImList R){ 
  for each referenceImage r in R  
    computeSilhouetteEdges (r) 
  for each pixel p in desiredImage d do 
    p.intervals =  {0..inf} 
  for each referenceImage r in R 
    bins b = constructBins(r.caminfo, r.silEdges, d.caminfo) 
    for each scanline s in d 
      incDec order = traversalOrder(r.caminfo,d.caminfo,s) 
      resetBinPositon(b) 
      for each pixel p in s according to order 
        ray3D  ry3 = compute3Dray(p,d.camInfo) 
        lineSegment2D l2 = project3Dray(ry3,r.camInfo) 
        slope m = ComputeSlope(l2,r.caminfo,d.caminfo) 
        updateBinPosition(b,m) 
        intervals int2D = calcIntervals(l2,b.currentbin) 
        intervals int3D = liftIntervals(int2D,r.camInfo,ry3) 
        p.intervals = p.intervals ISECT int3D       
} 
 

It is tempting to apply further optimizations to take greater 
advantage of epipolar constraints. In particular, one might con-

                                                                 
2 Sorting the contour vertices takes O(nl log(nl)) and binning takes O(nl2). 

Sorting and binning over k reference views takes O(knl log(nl)) and 
O(knl2) correspondingly. In our setting, l << n so we view the total 
complexity as O(lkn2). 



sider rectifying each reference image with the desired image prior 
to the ray-silhouette intersections. This would eliminate the need 
to sort, bin, and traverse the silhouette edge lists. However, a call 
to liftInterval would still be required for each pixel, giving 
the same asymptotic performance as the algorithm presented. The 
disadvantage of rectification is the artifacts introduced by the two 
resampling stages that it requires. The first resampling is applied 
to the reference silhouette to map it to the rectified frame. The 
second is needed to unrectify the computed intervals of the de-
sired view. In the typical stereo case, the artifacts of rectification 
are minimal because of the closeness of the cameras and the simi-
larity of their pose. But, when computing visual hulls the 
reference cameras are positioned more freely. In fact, it is not 
unreasonable for the epipole of a reference camera to fall within 
the field of view of the desired camera. In such a configuration, 
rectification is degenerate. 

4 Visual-Hull Shading 
The IBVH is shaded using the reference images as textures. In 
order to capture as many view-dependent effects as possible a 
view-dependent texturing strategy is used. At each pixel, the ref-
erence-image textures are ranked from "best" to "worst" according 
to the angle between the desired viewing ray and rays to each of 
the reference images from the closest visual hull point along the 
desired ray. We prefer those reference views with the smallest 
angle [7]. However, we must avoid texturing surface points with 
an image whose line-of-sight is blocked by some other point on 
the visual hull, regardless of how well aligned that view might be 
to the desired line-of-sight. Therefore, visibility must be consid-
ered during the shading process. 

When the visibility of an object is determined using its visual 
hull instead of its actual geometry, the resulting test is conserva-
tive– erring on the side of declaring potentially visible points as 
non-visible. We compute visibility using the visual hull approxi-
mation, VHR, as determined by IBVHisect. This visual hull is 
represented as intervals along rays of the desired image d. Pseu-
docode for our shading algorithm is given below. 
 
IBVHshade(intervalImage &d, refImList R){  
  for each pixel p in d do 
    p.best = BIGNUM 
  for each referenceImage r in R do 
    for each pixel p in d do 
       ray3D ry3 = compute3Dray(p,d.camInfo) 
       point3 pt3 = front(p.intervals,ry3) 
       double s  = angleSimilarity(pt3,ry3,r.camInfo) 
       if isVisible(pt3,r,d)  
         if (s < p.best) 
           point2 pt2 = project(pt3,r.camInfo) 
           p.color = sample_color(pt2,r) 
           p.best = s 
} 
 

The front procedure finds the front most geometric point of the 
IBVH seen along the ray. The IBVHshade algorithm has time 
complexity O(vkn2), where v is the cost for computing visibility of 
a pixel. 

Once more we can take advantage of the epipolar geometry 
in order to incrementally determine the visibility of points on the 
visual hull. This reduces the amortized cost of computing visibil-
ity to O(l) per desired pixel, thus giving an implementation of 
IBVHshade that takes O(lkn2). 

Consider the visibility problem in flatland as shown in 
Figure 4. For a pixel p, we wish to determine if the front-most 
point on the visual hull is occluded with respect to a particular 
reference image by any other pixel interval in d. 

 
Figure 4 – In order to compute the visibility of an IBVH sample with 
respect to a given reference image, a series of IBVH intervals are 
projected back onto the reference image in an occlusion-
compatible order. The front-most point of the interval is visible if it 
lies outside of the unions of all preceding intervals. 

Efficient calculation can proceed as follows. For each refer-
ence view r, we traverse the desired-view pixels in front-to-back 
order with respect to r (left-to-right in Figure 4). During traversal, 
we accumulate coverage intervals by projecting the IBVH pixel 
intervals into the reference view, and forming their union. For 
each front most point, pt3, we check to see if its projection in the 
reference view is already covered by the coverage intervals com-
puted thus far. If it is covered, then pt3 is occluded from r by the 
IBVH. Otherwise, pt3 is not occluded from r by either the IBVH 
or the actual (unknown) geometry. 
 
visibility2D(intervalFlatlandImage &d, referenceImage r){ 
  intervals  coverage = <empty> 
  for each pixel p in d do \\front to back in r 
    ray2D ry2 = compute2Dray(p,d.camInfo) 
    point2 pt2 = front(p.intervals,ry2); 
    point1D p1 = project(pt2,r.camInfo) 
    if contained(p1,coverage) 
      p.visible[r] = false 
    else 
      p.visible[r] = true 
    intervals tmp  =  
                prjctIntrvls(p.intervals,ry2,r.camInfo) 
    coverage = coverage UNION tmp 
} 
 

This algorithm runs in O(nl), since each pixel is visited once, and 
containment test and unions can be computed in O(l) time. 

 
Figure 5 – Ideally, the visibility of points in 3D could be computed 
by applying the 2D algorithm along epipolar planes. 

In the continuous case, 3D visibility calculations can be re-
duced to a set of 2D calculations within epipolar planes (Figure 
5), since all visibility interactions occur within such planes. How-
ever, the extension of the discrete 2D algorithm to a complete 
discrete 3D solution is not trivial, as most of the discrete pixels in 
our images do not exactly share epipolar planes. Consequently, 
one must be careful in implementing conservative 3D visibility. 



 

Epipole 

 
Figure 6 – An epipolar wedge includes all pixels between two epi-
polar lines that might potentially occlude each other. 

A guaranteed conservative, actually over-conservative, visi-
bility solution can be computed as follows. We define an epipolar 
wedge that starts from the epipole erd in the desired view, and 
extends to a pixel-width interval on the image boundary. Depend-
ing on the relative camera views, we traverse the wedge either 
towards or away from the epipole [18]. All pixels that are touched 
by a wedge can be computed with two “nearest-grid DDA” lines. 
For each pixel in the wedge, we compute its visibility with respect 
to other pixels in the wedge using the 2D-visibility algorithm 
previously discussed. If a pixel is declared visible, then no geome-
try within the wedge could have occluded this pixel in the 
reference view. Since a pixel may be included in more than one 
wedge, the AND of its visibility test in all relevant wedges deter-
mines its final visibility. There are O(n) wedges. The unions of 
their extents cover the whole image. Each wedge has O(n) pixels 
traversed, so visibility can be computed in O(lkn2). 

The visibility test described above can be excessively con-
servative, particularly when combined with the inherent tendency 
of the visual hull to block surface regions that are not occluded by 
the actual geometry. It is possible to achieve better visual results 
by choosing a different visibility criterion. Consider a sample-
sized patch on the visual hull to be visible when any ray from the 
epipole has an unobscured view of any portion of the patch. Un-
der this definition, the ANDing step of the conservative algorithm 
is replaced with an OR. This modification provides us with a cer-
tain amount of “hole-filling” in regions that would otherwise be 
considered occluded, and it provides a small performance advan-
tage. We have used this non-conservative visibility criterion, for 
the results presented here, and there are few noticeable artifacts. 

The total time complexity of our IBVH algorithms is O(lkn2), 
which allows for efficient rendering of IBVH objects.  These algo-
rithms are well suited to distributed and parallel implementations. 
We have demonstrated this efficiency with a system that computes 
IBVHs in real time from live video sequences. 

 
Figure 7 – Four segmented reference images from our system.  

5 System Implementation 
Our system uses four calibrated Sony DFW500 FireWire video 
cameras. We distribute the computation across five computers, 
four that process video and one that assembles the IBVH (see 
Figure 7). Each camera is attached to a 600 MHz desktop PC that 
captures the video frames and performs the following processing 

steps. First, it corrects for radial lens distortion using a lookup 
table. Then it segments out the foreground object using back-
ground-subtraction [1] [10]. Finally, the silhouette and texture 
information are compressed and sent over a 100Mb/s network to a 
central server for IBVH processing. 

Our server is a quad-processor 550 MHz PC. We interleave 
the incoming frame information between the 4 processors to in-
crease throughput. The server runs the IBVH intersection and 
shading algorithms. The resulting IBVH objects can be depth-
buffer composited with an OpenGL background to produce a full 
scene. In the examples shown a model of our graphics lab made 
with the Canoma modeling system was used as a background. 

 
Figure 8 – A plot of the execution times for each step of the IBVH 
rendering algorithm on a single processor. A typical IBVH might 
cover approximately 8000 pixels in a 640 × 480 image and it would 
execute at greater than 8 frames per second on our 4 CPU ma-
chine. 

In Figure 8, the performances of the different stages in the 
IBVH algorithm are given. For these tests, 6 input images with 
resolutions of 256 × 256 were used. The average number of times 
that a projected ray crosses a silhouette is 6.5. Foreground seg-
mentation (done on client) takes about 85 ms. We adjusted the 
field of view of the desired camera, to vary the number of pixels 
occupied by the object. This graph demonstrates the linear growth 
of our algorithm with respect to the number of output pixels. 

6 Conclusions and Future Work 
We have described a new image-based visual-hull rendering algo-
rithm and a real-time system that uses it. The algorithm is efficient 
from both theoretical and practical standpoints, and the resulting 
system delivers promising results. 

The choice of the visual hull for representing scene elements 
has some limitations. In general, the visual hull of an object does 
not match the object’s exact geometry. In particular, it cannot 
represent concave surface regions. This shortcoming is often con-
sidered fatal when an accurate geometric model is the ultimate 
goal. In our applications, the visual hull is used largely as an im-
poster surface onto which textures are mapped. As such, the visual 
hull provides a useful model whose combination of accurate sil-
houettes and textures provides surprisingly effective renderings 
that are difficult to distinguish from a more exact model. Our 
system also requires accurate segmentations of each image into 
foreground and background elements. Methods for accomplishing 
such segmentations include chromakeying and image differenc-
ing. These techniques are subject to variations in cameras, 
lighting, and background materials. 

We plan to investigate techniques for blending between tex-
tures to produce smoother transitions. Although we get impressive 
results using just 4 cameras, we plan to scale our system up to 
larger numbers of cameras. Much of the algorithm parallelizes in a 
straightforward manner. With k computers, we expect to achieve 
O(n2 l log k) time using a binary-tree based structure. 
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Figure 9 - Example IBVH images. The upper images show depth maps of the computed visual hulls. The lower images show shaded render-
ings from the same viewpoint. The hull segment connecting the two legs results from a segmentation error caused by a shadow. 
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Abstract
In this paper, we present efficient algorithms for creating and rendering image-based visual hulls. These
algorithms are motivated by our desire to render real-time views of dynamic, real-world scenes. We first
describe the visual hull, an abstract geometric entity useful for describing the volumes of objects as
determined by their silhouettes.  We then introduce the image-based visual hull, an efficient
representation of an object’s visual hull.  We demonstrate two desirable properties of the image-based
visual hull.  First, it can be computed efficiently (i.e., in real-time) from multiple silhouette images.
Second, it can be quickly rendered from novel viewpoints.  These two properties motivate our use of the
image-based visual hull in a real-time rendering system that we are currently developing .

Introduction
Computer graphics has long been concerned with the rendering of static synthetic scenes, or scenes
composed of non-moving computer-created models.  In time, attention turned to the rendering of dynamic
synthetic scenes, as exemplified by virtual reality systems, most modern computer games, and the recent
computer-animated movies.  More recently, many researchers have embraced an image-based rendering
approach in which scenes are represented by simple images that may be synthetic or acquired from the
real world (say, with a digital camera).  In this spirit, work has been done in rendering static acquired
scenes, non-moving scenes acquired from real-world imagery (e.g., QuicktimeVR).  However, relatively
little work has been done in the case of dynamic acquired scenes.  It is the goal of our work to develop an
appropriate representation and rendering system for such scenes.

Figure 1.  A hypothetical arrangement for acquiring dynamic scenes.
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Using our system, a user can control a virtual camera within a moving scene that is acquired in real-
time.  Such a system has many potential uses.  A commonly cited example is the virtual sports camera:
users viewing a sporting event would be able to view the event from any angle, perhaps to focus on their
favorite player or to see the action better.  We are also targeting our current system at other tasks:
teleconferencing and virtual sets.  In a teleconferencing setting, our system would allow participants to
navigate the virtual conference room or change their gaze while viewing the other participants moving in
real-time.  Applied to synthetic sets, our system would enable a director to see his actors perform in real-
time in a dynamic three-dimensional virtual set.

A dynamic, acquired rendering system can be designed analogously to a static, acquired one.  Static
scenes (or objects) are typically acquired from many still photographs taken at different locations.  Many
photos are acquired, and often the same camera is used to take them.  To extend this scenario to the
dynamic case, we substitute video sequences for still photographs and place multiple, synchronized video
cameras around the scene to acquire these sequences (see Figure 1).  The dynamic setup is more restrictive
than the static case:  the number of input images is limited by the physical number of video cameras, and
the cameras can only be placed in locations that do not impede the activity in the scene.

In both the static and dynamic cases, the acquired images are generally processed in some way—
details vary from system to system—after which new images of the scene (or object) can be produced from
arbitrary camera locations.  In the dynamic case, a distinction can be made between real-time systems,
those that process video and synthesize views at interactive rates, and off-line systems, those that require
more extensive processing or rendering before viewing.  In this paper, we are concerned with real-time
systems.

There are a number of challenges inherent in real-time systems.  The first is processing all the video
frames at interactive rates.  Obvious approaches for extracting useful information from multiple video
streams, such as multi-baseline stereo algorithms, run too slow on current general-purpose hardware for a
real-time system.  The second challenge is rendering new views such that a virtual image exhibits as
much visual fidelity as an image from one of the real cameras.  For example, voxel-based systems often
display noticeable artifacts in their images as a result of the low-resolution voxel data structure.

Our real-time system for rendering dynamic, acquired objects is designed to meet these challenges.
We utilize between five and ten synchronized, digital video cameras to acquire continuous video streams.
To achieve interactive rates, we process the video streams using efficient silhouette-based techniques to
create a approximate on-the-fly models (called the visual hull) of the dynamic scene objects.  We then
create novel views of these dynamic objects using image-based rendering techniques, which are fast and
preserve much of the detail of the original video sequences.

Related Work
Kanade’s virtualized reality system [Kanade97] is perhaps closest in spirit to the dynamic acquired
rendering system that we envision, although it is not currently a real-time system. They use a collection of
cameras in conjunction with multi-baseline stereo techniques to extract models of dynamic scenes.
Currently their method still requires significant off-line preprocessing time to perform the stereo
correlation, but they are exploring special purpose hardware for this task, an option we wish to avoid.
Recently, they have begun using silhouette methods such as the ones we use to improve the quality of their
stereo reconstruction [Vedula98].

Pollard and Hayes [Pollard98] attempt to solve the problem of rendering real-time acquired data with
their immersive video objects.  Immersive video objects are annotated video streams that can be morphed
in real-time to simulate three-dimensional camera motion.  Their representation also utilizes object
silhouettes, but in a different manner.  They match silhouette edges across multiple views, and use these
correspondences to compute a morph to a novel view.  This approach has some problems, however, as
silhouette edges are generally not consistent between views.  These inconsistencies require their cameras
to be placed close together, limiting the usefulness of the system.

Static Silhouette Methods
Silhouette contours have been used by computer vision researchers build approximate geometric models of
static objects and scenes.  These techniques are attractive because of the ease of extracting and working
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with silhouettes.
Typically these object models are computed by using silhouettes to “carve” away regions of empty

space.  Potmesil describes a method for computing a voxel representation of objects from sequences of
silhouettes [Potmesil87].  He uses an octree data structure to represent a binary volume of space, and does
not attack the problem of reconstructing novel views of his objects.

Szeliski has implemented a similar idea [Szeliski92].  He uses a turntable to rotate objects in front of a
real camera.  After automatically extracting object silhouettes, he computes an octree-based voxel
representation of the object by projecting octree nodes into the silhouette images.

Laurentini, recognizing the interest in silhouette methods, has introduced a formalism for analyzing
object reconstruction from silhouettes [Laurentini94].  Central to his theory is the concept of the visual
hull, which, is the best approximation to an object’s shape that one can build from simple silhouettes.  His
framework is useful for understanding the limitations of silhouette methods, something that has not been
quantified in earlier work.

Other volumetric carving methods, related to silhouette techniques, have also been suggested. These
include volumetric reconstruction from active laser-range data [Curless96] and volumetric reconstruction
based on photometric sample correspondences [Sietz97]. These techniques could be used to improve upon
the approximate object models that are obtained from silhouettes. However, currently, they are not as well
suited to real-time implementation.

Image-Based Rendering
Image-based rendering has been proposed as a practical alternative to the traditional modeling/rendering
framework. In image based rendering, one starts with images and directly produces new images from this
data. This avoids the traditional (i.e., polygonal) modeling process, and often leads to rendering
algorithms whose running time is independent of the scene’s geometric and photometric complexity.

Chen’s QuicktimeVR [Chen95] is one of the first commercial static, acquired rendering systems.  This
system relies heavily on image-based rendering techniques to produce photo-realistic panoramic images of
real scenes.  Although successful, the system has some limitations:  the scenes are static and the viewpoint
is fixed.

McMillan’s plenoptic modeling system [McMillan95] is QuicktimeVR-like, although it does allow a
translating viewpoint.  The rendering engine is based on three-dimensional image warping, a now
commonplace image-based rendering technique.  Dynamic scenes are not supported as the panoramic
input images require much more off-line processing than the simple QuicktimeVR images.

Light field methods [Gortler96, Levoy96] represent scenes as a large database of images.  Processing
requirements are modest making real-time implementation feasible, if not for the large number of cameras
required (on the order of hundreds).  The cameras must also be placed close together, resulting in a small
effective navigation volume for the system.

Paper Organization
In the next section we describe the visual hull, the approximate geometric representation that we use in
our system.  We demonstrate how it is related to object silhouettes, and why silhouette-based analysis
techniques are well suited to this sort of system.  We also point out some of the problems with using the
visual hull as an object approximation.

In the second section, we describe various algorithms for computing visual hulls using a image-based
representation.  The first algorithm is slow, but conceptually simple, while the second algorithm is faster
and more sophisticated.  We present advantages and disadvantages and runtime analyses.

The third section discusses various rendering algorithms for image-based visual hulls.  We have
investigated at least four algorithms, each with strengths and weaknesses.  In this paper, we discuss three
of the algorithms.

Silhouettes and the Visual Hull
Silhouette methods are well suited to real-time analysis of object shape.  First, computing object
silhouettes is fast and relatively robust.  Second, multiple silhouettes of an object give a strong indication
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of that object’s shape.

Computing Silhouettes
An object silhouette is essentially a binary segmentation of an image in which pixels are labeled
“foreground” (belonging to the silhouette) or “background.”  In this paper, background pixels are typically
drawn in white and foreground pixels non-white.

One common technique for computing silhouettes is chromakeying, or bluescreen matting [Smith96].
In this technique, the actual scene background is a single uniform color that is unlikely to appear in
foreground objects.  Foreground objects can then be segmented from the background by using color
comparisons.  Chromakey techniques are widely used in television weather forecasts and for cinematic
special effects, which demonstrates their speed and quality.  However, chromakey techniques do not admit
arbitrary backgrounds, which is a severe limitation.

More general is a technique called background subtraction or image differencing [Bichsel94,
Friedman97].  In background subtraction, a statistical model of a background scene is accumulated from
many images.  Changes in the scene, such as a figure walking into view, can then be detected by
computing the difference between the new frame and the retained model.  Differences that fall outside the
allowed margins of the model are classified as foreground objects.  There are many variations on the
above two algorithms, but almost all of them are fast and robust enough to be used in a real-time system.

Shape from Silhouettes: The Visual Hull
It seems intuitive that the shape of an object can be recovered from many silhouettes.  However, it is also
clear that not all shapes can be recovered from silhouettes alone.  For example, the concave region inside
a bowl will never be evident in any silhouette, so any method based solely on silhouettes will fail to
reconstruct it completely [Koenderink90].

Laurentini has introduced the concept of the visual hull for understanding the shapes of objects that
can be reconstructed from their silhouettes [Laurentini94].  Loosely, the visual hull of an object is the
closest approximation to that object that can be obtained from silhouettes alone.

The visual hull of an object depends both on the object itself and on a particular viewing region.  A
viewing region is a set of points in space from which silhouettes of an object are seen.  The viewing region
might be the set of all points enclosing the object, or, in a more practical case, a finite set of camera
positions arranged around the object.

Formally, the visual hull of object S with respect to viewing region R, denoted VH(S, R), is a volume in
space such that for each point P ∈ VH(S,R) and each viewpoint V ∈ R, the half-line from V through P
contains at least one point of S [Laurentini94].  This definition simply states that the visual hull consists
of all points in space whose images lie within all silhouettes viewed  from the viewing region.  Stated
another way, the visual hull is the maximal object that has the same silhouettes as the original object, as
viewed from the viewing region.

It is useful to think of an alternative, constructive definition of the visual hull with respect to a viewing
region.  Given a point V in the viewing region R, the silhouette of the object as seen from V defines a
generalized cone in space with its apex at V (see Figure 2).  The intersection of the cones from every point
in R results in the visual hull with respect to R.
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Figure 2.  The intersection of the three silhouette cones defines the visual hull as
seen from the viewing region.  In this case, the viewing region contains only the
apexes of the three silhouette cones.

This definition is useful because it implies a practical way to compute a visual hull.  Almost all useful
visual hull construction algorithms use some sort of volume intersection technique, as discussed in later
sections.

Limitations of the Visual Hull
In the following discussion, we will assume that the viewing region for the visual hull is the set of all
“reasonable” vantage points:  those points outside the convex hull of the object.  Using this special
viewing region results in the closest possible approximation to the actual object.  This viewing region is
also assumed whenever reference is made to a visual hull whose viewing region is not implied by context.

The visual hull is a superset that contains the actual object’s shape.  It cannot represent concave
surface regions (e.g., the inside of a bowl), in general, or even convex or hyperbolic points that are below
the rim of a concavity (e.g., a marble inside a bowl).  However, the visual hull is a tighter fit to the object
than a convex hull, which only includes object regions that are globally convex.  The visual hull of a
convex object is the same as the object.  However, the visual hull of an object composed of multiple,
disjoint convex objects may not be the same as the actual objects, see Figure 3.

Figure 3.  The visual hull of these two gray circles (black and gray regions) is
slightly larger than the circles themselves.  It is delimited by the bi-tangent lines
drawn in the figure.

When the viewing region of the visual hull does not completely surround the object, the visual hull
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becomes a coarser approximation and may even be larger than the convex hull.  The visual hull becomes
even worse for finite viewing regions, and may exhibit undesirable artifacts such as phantom volumes
(Figure 4).

Figure 4.  Intersecting the two silhouette cones results in “phantom” volumes,
shown in gray on the left.  A third silhouette can resolve the problem in this case
(right).

In spite of these limitations, the visual hull is still a useful entity for approximating an object’s shape
in a dynamic rendering system.  Object concavities can largely be camouflaged by object motion or hidden
with surface texturing. Viewing regions that do not surround the object can be used as long as the virtual
camera is confined to locations within the viewing region, as the visual hull is guaranteed to reproduce
correctly all silhouettes seen from within the viewing region.  Artifacts arising from using a finite viewing
region (i.e., a finite amount of cameras) can be lessened by sampling a desired viewing region with
appropriately placed viewpoints.

An Image-Based Visual Hull
One could attempt to compute a visual hull geometrically, but this approach, based on the intersection of
multiple polytopes, is difficult to implement robustly and the resulting representation is composed of a
great number of polygons if the silhouette contour is complex.

As a result, most visual hulls have been computed volumetrically by successively carving away all
voxels outside of the projected silhouette cone.  However, volumetric approaches suffer from problems
with resolution.  First, volumetric data structures are generally very memory intensive. This limitation is
reduced somewhat by the fact that visual hull is a binary volume, and it is thus well suited to octree-type
representations.  However, it is still difficult to retain the full precision of the original silhouette images
using a standard volumetric representation. If arbitrary configurations of input images are allowed then
the intersection of the projected regions from them can have an arbitrarily high spatial frequency content.
Thus no uniform spatial sampling is sufficient for exactly representing the final volume. Of course,
reasonable approximations can be made by requiring the resulting volume to project to a silhouette
contour that is within some error bound relative to the original.

In our approach, we prefer to use an image-based representation of the visual hull, which alleviates
some of the problems with a standard voxel approach.  In the graphics community, the term “image-
based” has had many interpretations.  In the strictest sense, an image-based representation consists solely
of images (possibly along with matrices describing camera configurations).  Along these lines, an image-
based representation of the visual hull is simply the set of silhouettes themselves (along with the
associated viewpoints).  By definition, such a representation preserves the full resolution of the input
images and contains no more or no less information than that provided by the silhouettes.

More generally,  an “image-based” representation is often identified with a two-dimensional, sampled
representation.  For example, a standard color image is a rectangular grid of color samples, and a depth
image is a grid of depth samples.  Note that the samples are not considered connected in any way; they
simply exist at regular intervals.  The bulk of this paper is concerned with this second form of image-
based visual hull.
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This second type of image-based visual hull is constructed with respect to some viewpoint V in the
viewing region of the visual hull.  We can imagine that a camera at this viewpoint sees a silhouette image,
which is discretized into a grid of pixels (i.e., samples).  For each pixel in this silhouette image a list of
occupancy intervals is stored.  If a pixel does not belong to the silhouette (i.e., it is background), then the
list is empty.  Otherwise, the list contains intervals of space that are occupied by the visual hull of the
object.  These intervals, extruded over the solid angle subtended by the pixel, represent the region of the
visual hull that projects to that pixel.  The union of all such slices gives the visual hull as sampled from
that viewpoint.  In Figure 5, we show a slice of an image-based visual hull.  The lines represent viewing
rays along one column of the image, and the dark line segments denote occupied regions of space.

Figure 5.  A single slice of an image-based visual hull.  A full image-based visual
hull contains many such slices, forming a volume in space.

Advantages of the Image-Based Representation
The image-based representation has a number of advantages in terms of storage requirements,
computational efficiency, and ease of rendering.

The occupancy intervals can be stored as pairs of real numbers (where the numbers represent the
minimum and maximum depths of the interval), similar to a run-length encoded volume.  Thus, while the
volume is discretized in two dimensions, the third dimension is continuous, allowing for higher resolution
volumes than a voxel approach.  Note also that this representation can be used for an arbitrary volume; it
is not specialized for a visual hull.  Similar data structures have been used by [VanHook86] and
[Lacroute94] in traditional volume rendering settings.

Computing a visual hull using the image-based representation is much simpler than previous
approaches.
As we will show in the next section, the three-dimensional generalized cone intersections and the
volumetric carving operations of other methods are replaced with simple interval intersections in our
method.  These interval intersections are fast and robust, allowing for a real-time calculation of the visual
hull.

Rendering the visual hull is also facilitated by the image-based representation.  As we show in later
sections, this representation can be rendered using only slight modifications to the standard three-
dimensional image warp algorithm.  This approach minimizes image resampling, as we only resample
during rendering, and produces renderings of quality comparable to the input video images.

Mathematical Preliminaries
We first introduce the mathematical notation and concepts that we use in the rest of the paper.  Dotted

capital letters (e.g., C& ) represent points in three-dimensional space, while lowercase over-bar letters
(e.g., x ) represent homogeneous image (pixel) coordinates.  Matrices (all are 3 x 3) are written in bold
capital letters (e.g., P), while scalars are lowercase (e.g., t).  We denote equality up to a scale factor with a
dotted equals sign, =& .
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One View
The basic quantity that we manipulate is a view, which is an image along with the viewpoint from which

it was seen.  We characterize a view [P, C& ] by a center of projection C&  (i.e., the viewpoint) and an
inverse projection matrix P that transforms homogeneous image coordinates x  to rays in three-
dimensional world space according to the following equation:

xtCtX P+= && )( ,

where )(tX&  represents three-dimensional world points parameterized by the distance (or range) t along a

ray.  Conceptually, these rays originate at C&  and pass through the pixel x  = [u, v, 1]T in the imaging
plane.

Often it is computationally more convenient to work with the reciprocal of the range parameter t .  We
call this quantity the generalized disparity, defined as

t

1=δ .

Two Views
Two views [ 1P , 1C& ] and [ 2P , 2C& ] with different centers of projection (i.e., 1C& ≠ 2C& ) are related by a so-

called epipolar geometry.  This geometry describes how a ray through a pixel in one view is seen as an
epipolar line in the other view.  Mathematically, this relationship between pixel coordinates in one view
and epipolar lines in a second view is expressed by the fundamental matrix 21F  between the two views

[Faugeras93].  That is,

01212 =xx T F ,

where the quantity 121xF  gives the coefficients of a line equation in the second image.  Given two views

[ 1P , 1C& ] and [ 2P , 2C& ], their fundamental matrix can be computed as

1
1

2221 PPEF −= .

Matrix 2E  is a matrix representation of the cross product defined such that

vev ×= 22E ,

where v is an arbitrary vector and vector 2e is the epipole, or the projection of the first view’s center of

projection onto the second view’s image plane.  This epipole is computed as

)( 21
1

22 CCe && −= −P ,

and the epipole of the first view with respect to the second is computed similarly.

Often we want to calculate a desired view from a known view.  Given two views [ 1P , 1C& ] and [ 2P ,

2C& ], where the first one is known and the second one is desired, we can transform pixels from the known

view to pixels in the desired view using a three-dimensional image warping equation [McMillan96]:

)( 21
1

2111
1

22 CCxx &&

& −+= −− PPP δ . (1)

This equation gives pixel coordinates 2x  in the desired view of the point defined by the pixel 1x  and the

disparity 1δ  in the first view.  Thus, computing a desired view from a single known view requires

auxiliary disparity information, which is often stored in the form of a depth image associated with the
known view.

In computing image-based visual hulls, we are often interested in recovering the range (or disparity)
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parameter t2 given corresponding image points in two views.  We solve this problem by computing the
range parameters of the points of closest approach of the two rays defined by the corresponding pixels in
two images as follows:

[ ]
2

2211

22112212
1

det

xx

xxxCC
t

PP

PPP

×
×−=

&&

.

The parameter 2t  can be computed similarly.

Three Views
It has been shown [Shashua97] that three views are related by a mathematical entity called the trilinear
tensor.  Similar to the fundamental matrix for two views, the trilinear tensor describes the relationship
between points and lines in the three views.  A complete description of the trilinear tensor is beyond the
scope of this paper, however, we do present four equations derived from the tensor which relate the
coordinates of a pixel ]1,,[ yxp ′′′′=′′  in a third view to the coordinates of pixels in two other views

( ]1,,[ yxp =  and ]1,,[ yxp ′′=′ ):

011313313 =−′+′′′−′′ i
i

i
i

i
i

i
i ppxpxxpx αααα ,

012323313 =−′+′′′−′′ i
i

i
i

i
i

i
i ppxpxypy αααα ,

,021313323 =−′+′′′−′′ i
i

i
i

i
i

i
i ppypyxpx αααα

022323323 =−′+′′′−′′ i
i

i
i

i
i

i
i ppypyypy αααα .

In the above equations, jk
iα (i,j,k = 1,2,3) is the 27 element trilinear tensor, and the notation

inm
i pα denotes a dot-product of a row of the tensor with p .  The elements of jk

iα are obtained from the

three views [ 1P , 1C& ], [ 2P , 2C& ], and  [ 3P , 3C& ] according to the formulas given in [Shashua97].

The important quality of these equations, with regard to image synthesis, is that the third pixel’s
location is completely constrained by the locations of the two other pixels; no auxiliary depth image is
needed.  As we will demonstrate, these equations can be exploited when rendering novel views given two
or more known views.

Creating Image-Based Visual Hulls
In the following sections, we describe algorithms for computing image-based visual hulls from a finite
number of silhouette images.  In all of these algorithms, the input is assumed to be a set of k silhouettes
(i.e., binary images), their associated viewpoints, and a viewpoint from which the visual hull is to be
constructed.  The algorithms output a sampled image of the visual hull, in which each pixel of the image
contains a list of occupied intervals of space.

To ease algorithm analysis, the input silhouettes are assumed to be square m x m arrays of pixels.  The
output resolution of the image-based visual hull is n x n pixels.

The Basic Algorithm
We implement the same basic idea in all of our visual hull construction algorithms.  We cast a ray into
space for each pixel in the desired view of the visual hull.  We intersect this ray with the k silhouette cones
defined by the k silhouette views and record the intersections as pairs of enter/exit points (i.e., intervals).
This process results in k lists of intervals, which are then intersected together to form a single list.  This
final list, representing the intersection of the viewing ray with the visual hull, is stored in our data
structure.

The key aspect of all our algorithms is that all of the ray/cone intersection calculations are done in two
dimensions rather than three.  Recall that each silhouette cone is defined by a two-dimensional silhouette
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image and a center of projection.  Instead of projecting these cones into three-dimensional space and then
computing ray intersections, we can project the three-dimensional ray into the two-dimensional space of
the silhouette image and perform intersections there.  The ray simply projects to a line (in fact, the
epipolar line as discussed in a previous section), and the resulting two-dimensional calculations are much
more tractable.

The above observations lead directly to an algorithm for computing the image-based visual hull:

for each pixel p = [x,y,1] in VHULL
initialize VHULL[x][y] = [depthmin, depthmax]

for each silhouette image SILi
compute fundamental matrix Fi
for each pixel p = [x,y,1] in VHULL

compute epipolar line coefficients Fip
trace epipolar line in image SILi
record list of silhouette contour intersection points [pi,k]
interval_list = []
for each pair of intersection points pi,2l and pi,2l+1

compute depthi,l,min  and depthi,l,max measured w.r.t. VHULL
interval_list = interval_list ∪ [depthi,l,min, depthi,l,max]

endfor
VHULL[x][y] = VHULL[x][y] ∩ interval_list
endfor

endfor

The algorithm is illustrated in Figure 6. Six silhouettes from a synthetic dinosaur model are shown,
and the desired image-based visual hull is computed from the viewpoint of the upper left silhouette (the
primary view). Three pixels are labeled in this primary view. The corresponding epipolar line for each
pixel is shown in the remaining five (secondary) images. The algorithm processes one secondary image at
a time. First it detects each interval where the line crosses through the silhouette of the object. At each of
these silhouette contour crossings the length along the ray of the primary image is computed using the
equation for the point of closest approach. A list of these intervals is computed for each secondary image.
Finally, the interval lists are merged by computing their intersections across all secondary images. This
process is repeated for every pixel in the primary image.

Figure 6.  The image-based visual hull is computed from the viewpoint shown in the
upper left.  The epipolar lines corresponding to the three labeled pixels are shown
in the five other silhouettes.
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Analysis
The basic algorithm, while conceptually simple, is not a particularly efficient way to compute image-based
visual hulls.  The asymptotic running time is O(km2n), as the algorithm traces a line of length O(n) in k
images for each of m2 pixels in the primary view.  This analysis ignores the number of intervals traced and
the cost of intersecting them.  This omission is justified as there are typically far fewer intervals than the
number of pixels in one dimension of a secondary image, and certainly not more than this number.  When
the primary and secondary images are of the same dimensions, a common case, then the running time is
O(kn3).  Thus, we generally consider this an n-cubed algorithm.

The algorithm also suffers from some quantization problems.  The digital epipolar lines traced by the
algorithm are generally not identical to the ideal epipolar lines.  This discrepancy may cause the silhouette
intersection points to be slightly off.  In practice, such quantization problems have been largely
unnoticeable.

Line-Cache Algorithm
The best running time we might expect from a visual hull construction algorithm is O(km2).  This lower
bound arises from the fact that we need to fill in interval lists for m2 pixels, and we need to process k
views.  One might imagine a faster algorithm, based on a hierarchical decomposition (e.g., a quadtree) of
the visual hull image, but here we will assume we want to create m2 individual interval lists.  A
hierarchical decomposition, if desired, can then be applied to any of our algorithms.

The line-cache algorithm is an algorithm for computing the image-based visual hull that achieves the
O(km2) running time.  The increased efficiency is due to a simple observation:  multiple three-dimensional
rays from the primary image project to the same two dimensional line in the secondary images.  This fact
can be understood from the epipolar geometry between two views.  A viewing ray from the primary image
and the viewpoint of a secondary image are contained within a plane in space.  This plane projects to an
epipolar line in the secondary image.  Any other viewing ray from the primary image which also lies in
this plane projects to the same epipolar line in the secondary image.

The observation can also be demonstrated with a counting argument.  It takes roughly O(n) lines of
length O(n) to fill a discrete (pixelized) two-dimensional space of size O(n2).  Thus, if we project O(n2)
lines of length O(n) into this space, we can expect that O(n) lines will map to the same line.  Of course,
this argument is really only valid in a discrete setting, which is the setting in which we compute our
image-based visual hulls.

Using the above observation, we amend our basic algorithm in the following way.  When we attempt to
compute the two dimensional line/silhouette intersection, we first check in an “epipolar line cache” data
structure to see if the intersection intervals have already been computed.  If so, we used the cached results.
Otherwise, we compute the line intersections and store the resulting interval list in the line cache.

Epipole

Image

Figure 7.  We determine line cache indices by the farthest intersection of the
epipolar line with the image boundary.  Lines that do not intersect this boundary
need not be cached.
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The only real issue to deal with in this algorithm is how to index the cache.  That is, how do we
determine that two lines are the same?  There are many ways to do this; in our implementation we
compute the intersection of the epipolar line with the farthest image boundary (see Figure 7).  We use this
intersection coordinate as the index to our cache.  This indexing style allows us to vary the performance of
our cache by changing the resolution of our coordinate system.  For example, computing intersections to
the nearest half-pixel gives a larger cache that better represents lines, but may result in fewer cache hits.
Using the nearest double-pixel results in a smaller cache and more hits, but may group lines that are too
dissimilar in the same cache location.

The line-cache algorithm is as follows:

for each pixel p = [x,y,1] in VHULL
initialize VHULL[x][y] = [depthmin, depthmax]

for each silhouette image SILi
for each cache index

initialize CACHEi[index] = EMPTY
endfor
compute fundamental matrix Fi
for each pixel p = [x,y,1] in VHULL

compute epipolar line coefficients Fip
compute line cache index = compute_index(Fip)
if(CACHEi[index] = EMPTY)

trace epipolar line in image SILi
record list of silhouette contour intersection points [pi,k]
CACHEi[index] = [pi,k]

else
[pi,k] = CACHEi[index]

endif
interval_list = []
for each pair of intersection points pi,2l and pi,2l+1

compute depthi,l,min  and depthi,l,max measured w.r.t. VHULL
interval_list = interval_list ∪ [[depthi,l,min, depthi,l,max]]

endfor
VHULL[x][y] = VHULL[x][y] ∩ interval_list
endfor

endfor

Analysis
We will consider a worst case running time for the line-cache algorithm in which all cache lines are
accessed.  The size of each cache is O(n), and for each cache entry a line of length O(n) is traversed,
leading to a total time of O(kn2) spent computing all cache entries.  The algorithm spends time O(km2)
retrieving interval lists from the caches.  Thus, the runtime is O(kn2) if n > m, and O(km2) otherwise.  In
practice, we find that 90% of the cache entries are accessed, so this worst case analysis is applicable.

The line-cache algorithm gains its speed by making some tradeoffs in the quality of the resulting
visual hull.  In addition to the quantization errors from the basic algorithm, the line cache algorithm
introduces errors by mapping slightly different epipolar lines to the same cache location.  In practice, such
errors are small, although they may be noticeable near depth discontinuity edges.

Rendering Image-Based Visual Hulls
The rendering problem is to produce a novel image of the original object as seen from some desired view,
given an image-based visual hull of the object along with its original source views (i.e., the camera pose
and images before segmentation).  Since we have already shown that the visual hull is an approximation
to the object’s true shape, it will generally be impossible to create the exact image of the object from the
new view.  Thus, the goal of our rendering algorithms is to reproduce as closely as possible the true
object’s shape and color with information from the visual hull (shape) and the original camera images
(color).

We are interested in a number of additional sub-goals for our rendering algorithms.  First, they should
be fast enough so that they will be applicable in our dynamic, real-time system.  Second, they should offer
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high quality imagery in the sense that rendered images should be reasonably indistinguishable from the
original camera images.

The inputs to each algorithm are assumed to be an image-based visual hull (n x n pixels), k original
camera images (n x n pixels), and a desired view.  The output is an m x m pixel image as seen from the
desired view.

In all comparisons, we use the synthetic dinosaur images as inputs.  The visual hull is computed from
six 256 x 256 images.  We generate novel renderings from three different viewpoints to exercise the
strengths and weaknesses of the different algorithms.  All six input dinosaur images are shown in Figure
8.

Figure 8.  The six input dinosaur images (textures and silhouettes) used to create
and render the image-based visual hull examples in this paper.

Texture Extrusion
The texture extrusion rendering method requires the image-based visual hull to be computed from the
same viewpoint as one of the original camera images.  In this special case, the pixels in the camera image
are in one-to-one correspondence with the pixels in the visual hull image.  In other words, each list of
occupancy intervals in the visual hull image has a color assigned to it from the corresponding pixel in the
camera image.

This special arrangement suggests a simple rendering technique:  we can draw the occupancy intervals
as seen from the new view, and we can color them with the colors assigned from the camera image. Such
a rendering technique amounts to extruding the two-dimensional color image (or texture) along viewing
rays to create a three-dimensional textured volume.

The basic requirement to use this technique is an ability to render a list of occupancy intervals from
arbitrary viewpoints.  The occupancy intervals are essentially long, thin cones in space.  Calculating their
projected shape exactly in the desired view would be prohibitively expensive for a real-time rendering
algorithm.  However, for viewpoints that are close to the viewpoint of the visual hull, the occupancy
intervals can be approximated by simple line segments.  Drawing these line segments can be done very
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quickly since it is possible calculate the end points of the line segments efficiently.
The line segment endpoints can be incrementally computed using the three-dimensional warping

equation (Equation 1).  Recall that the image-based visual hull data structure stores a list of disparity
values ],,,,[ max,min,max,1min,1 kk δδδδ K  for each pixel ]1,,[ yxp = , much like a Layered Depth Image

[Shade98].  As is done when rendering Layered Depth Images, we exploit the fact that the warping
equation reduces to a simple function of disparity for a fixed pixel p :

eax δδ +=&)(2 , (2)

where pa 1
1

2 PP−=  and )( 21
1

2 CCe && −= −P , which are constant for a given p .

While a Layered Depth Image only stores depth values for front-facing surfaces, we store pairs of
depth values that delimit occupied regions of space.  Thus, to calculate the endpoints for the line
segments, we evaulate this simple expression for each disparity pair ),( maxmin δδ  in the occupancy

interval list.  Given the endpoints, we draw the line segments using a fast digital line drawing routine.
The complete texture extrusion algorithm is as follows:

compute H = P2
-1P1

compute e = P2
-1(C1 – C2)

for each pixel p = [x,y,1] in VHULL
compute a = Hp
for each interval [dl,min, dl,max] in VHULL[x][y]

compute line segment endpoints [xl,min, yl,min] = a + dl,mine
and [xl,max, yl,max] = a + dl,maxe using the incremental
three-dimensional warp equation (Equation 2)
draw_line(xl,min, yl,min, xl,max, yl,max, VHULL[x][y].color)

endfor
endfor

Analysis
The texture extrusion algorithm runs in time complexity O(n2m), as it draws a line of length O(m) for
each of n2 interval lists in the visual hull data structure.  Although this may not seem fast, in practice it is
fast enough for real-time rendering (~ 20 frames/sec).  Texture extrusion also produces reasonably good
looking images for viewpoints close to the viewpoint of the visual hull.  Figure 9a demonstrates a novel
viewpoint close to the original one.  The visual hull in this case was computed from the viewpoint of the
upper left-hand image in Figure 8.

Texture extrusion fails, however, when the desired viewpoint is far from the viewpoint at which the
visual hull was sampled.  This failure is primarily due to two factors.  First, when the viewpoint is moved
too far to one side, the extruded colors no longer approximate the true color of the object (see Figure 9b).
This problem is unavoidable, as a single camera image can not see the entire object at one time.  Second,
when the viewpoint is moved very close to the object, the approximation of drawing line segments for the
occupancy intervals is no longer valid and the images “explode” (see Figure 9c).

(a) (b) (c)
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Figure 9.  Images rendered from three novel viewpoints using texture extrusion.

Texture Projection
The texture projection algorithm extends the texture extrusion algorithm to handle a wider range of
viewpoints.  It corrects the second viewpoint problem, that of incorrect colors for distant viewpoints, by
combining colors from multiple textures into a single rendering.

Texture projection is a simple extension to the texture extrusion algorithm.  In texture extrusion, a
single texture is essentially projected through the volume of the visual hull.  Regions of the visual hull that
are seen from the texture’s viewpoint are colored correctly, while other regions are colored incorrectly.  In
texture projection, we project multiple textures onto the surface of the visual hull.  Regions of the visual
hull that are not seen by one texture can be colored with information from another texture.

We implement texture projection by a small modification to the texture extrusion algorithm.  Instead
of drawing each line segment with a constant color, we projectively texture map the line segment with
colors from another texture.  The projective texture mapping is done using the trilinear tensor equations.
The tensor between the three views—the visual hull’s view, the texture’s view, and the desired view—
allow us to compute texture coordinates in the texture’s view given coordinates in the visual hull’s view

and the desired view.  Pseudocode for the algorithm is give below.  In the pseudocode [ 1P , 1C& ] refers to

the visual hull’s view, [ 2P , 2C& ] denotes the desired view, and [ kP , kC& ] is one of the texture views.

compute H = P2
-1P1

compute e = P2
-1(C1 – C2)

for each pixel p = [x,y,1] in VHULL
compute a = Hp
for each interval [dl,min, dl,max] in VHULL[x][y]

compute line segment endpoints [xl,min, yl,min] = a + dl,mine
and [xl,max, yl,max] = a + dl,maxe using the incremental
three-dimensional warp equation (Equation 1)

k = select_texture(x, y, l)
draw_line_proj_tex(x, y, xl,min, yl,min, xl,max, yl,max, P1, C1, P2, C2, Pk, Ck)

endfor
endfor

The auxiliary function draw_line_proj_tex implements projective texture mapping using the

trilinear tensor computed from [ 1P , 1C& ], [ 2P , 2C& ], and [ kP , kC& ].  The function select_texture selects

the texture to be mapped to the indicated visual hull interval.  Many mappings are possible; we
implemented a particularly simple strategy in our real-time implementation.  We choose the texture with
the minimum angle between the visual hull interval and the texture’s viewpoint.

Analysis
The texture projection algorithm has the same asymptotic running time as the texture extrusion algorithm,
O(n2m).  However, because of the cost of the texture mapping, the hidden constant is much larger, which
makes the algorithm slower in practice.  The quality of the images is generally better, and the algorithm is
useful for larger changes in the viewpoint (see Figures 10a and 10b).  However, texture projection does
suffer from the same zooming problem as the texture extrusion algorithm (see Figure 10c).
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(a) (b) (c)

Figure 10.  Images rendered from three novel viewpoints using texture projection.

Ray-Casting
Both the texture extrusion and the texture projection algorithms suffer from the same problem with
viewpoints that are too close to the object:  the image tends to break apart.  This problem is directly
related to the fact that both algorithms are forward mapped.  They transform points from the visual hull to
pixels in the desired view, and they may miss pixels along the way.  Similar problems exist in other areas
of computer graphics, and they are typically solved by using a backward mapped algorithm.  In such an
algorithm, pixels in the desired view are transformed to points in the visual hull.  In this manner, every
pixel in the desired view can be mapped to some point in the visual hull and colored appropriately.

To implement a backward mapped algorithm for rendering visual hulls, we would like to know for
every pixel in the desired view whether or not the ray through that pixel intersects the visual hull.  To
compute this, we can cast a ray for every pixel in the desired view and test it for intersections with the k
silhouette cones from the k cameras.  Or, in other words, we can compute an image-based visual hull from
the desired viewpoint.

An image-based visual hull computed from the desired viewpoint effectively gives the shape of the
visual hull in the form of a depth image.  However, we would like to have the proper colors along the with
shape.  We can compute the colors using a bit of additional computation to back project the visual hull to
the k camera images and sample the colors.  The complete algorithm is as follows:

compute VHULLd from view [Pd, Cd]

for each pixel p = [x, y, 1] in VHULLd
extract depthmin from VHULLd[x][y]
for each camera image CAMk

backproject p to pk = [xk, yk, 1] using Equation 1
colork = CAMk[xk][yk]

endfor
VHULLd[x][y] = weighted_avg(colork)

endfor

The function weighted_avg simply computes some weighted average of the colors sampled from the k
camera images.  A color weight may be 0 if the camera makes no contribution to the color (e.g., it is
occluded) or 1 if the camera contributes all the color (e.g., a winner-take-all strategy).  In some cases,
calculating the weights may be non-trivial.  We use the winner-take-all approach in our implementation.
That is, we assign a "best" camera a weight of 1 and assign all other cameras 0 weights.  We define the
best camera as the camera whose viewing ray is closest to that of the viewing direction.  This strategy for
assigning camera weights ignores the occlusion problem, and cameras may be selected which actually do
not see the pixel to be colored.
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Analysis
Due to its backward mapped nature, the ray-casting algorithm has a complexity fundamentally different
than the previous two rendering algorithms.  The running time is O(km2), as the visual hull calculation is
O(km2), and the pixel coloring loop backprojects each of m2 pixels k times.  This running time is
noteworthy as it is proportional to the size of the desired image and independent of the size of the camera
images (for m > n).  For m = n, the algorithm is n-squared, which compares favorably to the n-cubed
forward mapped algorithms.  However, the hidden constant is large, so this advantage is not realized at
typical values of n.

This algorithm is slower than the forward mapped algorithms, but potentially produces images of
higher quality (image quality and speed depend on the choice of color weighting).  However, since the
runtime of this algorithm includes the explicit visual hull calculation, the comparison is slightly unfair.
Also, because it is backward mapped, problems with close range viewpoints are avoided.   Ray-casting
results are shown in Figures 11a, 11b, and 11c.

(a) (b) (c)

Figure 11.  Images rendered from three novel viewpoints using ray-casting.

Conclusion
We have introduced the image-based visual hull as an approximate object representation for real-time
dynamic acquired rendering systems.  The needs of these systems require algorithms that allow for both
the analysis of video inputs and the synthesis of rendered outputs to occur in real-time.  Our algorithms
for creating and rendering image-based visual hulls satisfy these requirements.

We have shown that the visual hull is a reasonable object representation to use in terms of accuracy
and robustness.  It provides a reasonable approximation to object shape in most cases, and requires only
simple silhouette segmentation for acquisition.

We have demonstrated an efficient real-time algorithm for creating visual hulls.  First, we exploit
epipolar geometry to reduce three-dimensional volume intersections to simpler two-dimensional line
intersections.  Then, we use a line-caching approach to reuse previously computed results giving a further
increase in performance.

Finally, we have presented a number of algorithms for rendering views of image-based visual hulls
from novel viewpoints.   The texture extrusion algorithm is fast but does not make use of all available
color information.  The texture projection algorithm, while slower, does utilize color information from all
possible cameras.  Both algorithms, however, suffer from a problem with viewpoints that are too close to
the object.  This problem is remedied by the ray-casting algorithm, which generates an image directly
from the visual hull calculation.
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